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Abstract 

Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), 

poly(methyl methacrylate) (PMMA), and porous graphite targets were investigated 

primarily using a mid wave infrared (MWIR) imaging Fourier transform infrared (FTIR) 

spectrometer.  Polymer and graphite targets were irradiated with a 1.064 µm Nd:YAG 

and a 1.07 µm ytterbium continuous wave (CW) fiber laser, respectively.  Both low 

speed, buoyant flow atmospheric pressure and shear flow at Mach 0.1 - 0.9 were studied 

experimentally.  Data was acquired with a spectral resolution of 2 cm-1 and spatial 

resolution as high as 0.52 mm2 per pixel with framing rates up to 2.5 Hz.  Strong 

emissions from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 

1900 cm-1 and 4000 cm-1.  A single-layer radiative transfer model was developed to 

estimate spatial maps of temperature and column densities of CO and CO2 from the 

hyperspectral imagery.  Gas plume temperatures were observed as high as 2999 K with 

statistical errors of ± 395 K and systematic errors of less than 100 K, associated from the 

different radiative transfer models.  Column densities were observed with statistical 

errors of ~ 5 % and systematic errors of less than ~ 18 %.  Also, surface temperatures 

from optical pyrometry measurements were observed as high as 2500 K with systematic 

errors of ± 200 K.  The imaging Fourier transform spectroscopy (IFTS) observations 

were complemented with high speed three-color visible imagery and higher spectral 

resolution, non-imaging Fourier transform spectroscopy (FTS) observations.   
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Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP) were 

investigated from hyperspectral IFTS observations.  The analysis of pre-combustion 

spectra yields effective temperatures rising from ambient to 1200 K and suddenly 

increasing to 1515 K upon combustion.  The spectral analysis for a single pixel within a 

single frame yields an effective temperature of 1019 ± 6 K, and CO and CO2 column 

densities of 1.14 ± 0.05 and 1.11 ± 0.03 x 1018 molec/cm2, respectively.  Systematic 

errors associated with the radiative transfer model dominate, yielding effective 

temperatures with uncertainties of > 100 K and column densities to within a factor of 2-3.  

Hydrocarbon emission at 2800 to 3200 cm-1 was well correlated with CO column density. 

Desorption kinetics at the boundary layer was investigated for laser irradiated 

PMMA.  Spatial maps of plume temperature and MMA concentration were developed for 

surfaces irradiated with laser radiative fluxes between 4 - 22 W/cm2.  The surface 

temperatures evolved with an initial rise of about 20 K/s, and approach a steady state at 

about 600 K after 10 s, when irradiated at 22 W/cm2.  When heating the surface with a 

10.6 µm CO2 laser, the rate of temperature rise is about three times greater despite a 

lower irradiance.  For laser irradiated PMMA at 22 W/cm2, an effective activation energy 

for MMA formation at the surface of 30.83 ± 8.29 kJ/mol was obtained.  This effective 

activation energy is consistent with surface desorption of the monomer. 

For laser-irradiated porous graphite targets, experimental results indicated a 

dominant CO2 production at the surface-boundary layer at surface temperatures between 

2157 - 2530 K.  This indicates production of CO and CO2 at the surface from 

heterogeneous reaction.  On the basis of CO/CO2 primary product ratio, we obtained 
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effective activation energies of 149 to 111 kJ/mol at distances between 0.72 mm to 3 mm 

in the boundary layer, respectively.  The effective activation energies were comparable 

near the surface (0.72 mm) with the global heterogeneous reaction for production of CO 

and CO2 at the surface, whereas in the boundary layer (2.16 mm) with the global 

homogeneous reaction of CO oxidation to CO2.  Kinetics interplay between 

heterogeneous and homogeneous combustion are shown from experimental observations 

at high spatial resolutions.  Overall the boundary layer profile at steady-state is consistent 

with CO being mainly produced at the surface-boundary layer by heterogeneous reactions 

followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.   
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IMAGING FOURIER TRANSFORM SPECTROSCOPY OF THE BOUNDARY 

LAYER PLUME FROM LASER IRRADIATED POLYMERS AND CARBON 

MATERIALS 

I. Introduction 

The high-energy laser (HEL) lethality community requires a better understanding 

of laser material damage for a wide variety of emerging threats.  In order to reduce the 

dimensionality of laser-materials interactions, it is necessary to develop novel predictive 

capabilities of these events.  Laser ablation of materials in an oxidizing environment and 

under the influence of air flow is a complex process defined by the interplay of a number 

of processes, such as oxidation, vaporization, melting, expulsion of molten material, and 

breakdown/removal of oxide layer [1-3].  There has been relatively limited computational 

efforts aimed at investigation of the enhancement of material removal by external gas 

flow, the effect of the oxidation of metal targets on the efficiency of laser cutting, and the 

characteristics of the material recession under conditions of laser-induced charring of 

polymer composites and carbon-rich targets.  Often the fundamental analyses must be 

limited to a few key processes and global, predictive modeling is difficult.  The objective 

is to better understand the fundamentals of laser lethality testing by developing empirical 

models from hyperspectral imagery thus enabling the development of a robust library of 

experiments for vulnerability assessments. 

Imaging Fourier-transform spectrometers (IFTS) has recently been developed 

with the ability to measure spatial and temporal variations in plume temperature and 
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molecular species concentrations, with fast framing rates [4-7].  The coupling of the focal 

plane array (FPA) to a Michelson interferometer enables collection of spectra at all pixels 

simultaneously, thus providing precise characterization of emissive infrared plumes at 

high spatial resolutions.  Past research efforts have been aimed to monitor spectral 

variations of emissive plumes from: detonation fireballs [8-10], muzzle flash [11], jet 

engines [12, 13], chemical plumes [14, 15] and smokestacks [16].  Recently there has 

been a growing interest in measuring gaseous emission of flares [17] and laminar flames 

[18] to identify and quantify such emissions.  With previous work illustrating some of the 

capabilities of this instrument, there is significant potential for studying combustion 

plumes from laser irradiated polymers and carbon based materials.  Some of the benefits 

of hyperspectral imagery for examining combustion events are: (1) turbulence in plume 

dynamics can be studied from high-speed broadband imagery contained in the 

interferogram cubes, (2) narrow instantaneous field-of-view (IFOV) simplifying spatial 

averaging as well the spectral interpretation for large variations in the temperature and 

density of combustion plumes, and (3) construction of two-dimensional dynamics of the 

evolve species in the gas phase to predict the chemical kinetics interplay in a dynamic 

flow revealing plume symmetry [12].   

Mid wave IFTS has the ability to measure simultaneous spatial and temporal 

variations in molecular species concentrations and gas temperature fluctuations in the 

spectral range of 1800 – 6667 cm-1 (1.5–5.5 µm) with adequate spectral (0.25–150 cm-1) 

and spatial resolutions (≤ 1 mm2 per pixel).  The instrument features a 320 x 256 pixel 

Stirling-cooled indium antimonide (InSb) focal plane array (FPA) that can be narrowed to 
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improve the temporal resolution.  At a focal distance of 3.12 m, the IFOV yields a spatial 

resolution of ~ 0.81 mm2 per pixel.  The instrument has been upgraded with a 0.25X 

telescope that allows for a minimum focal distance of 35 cm, improving spatial resolution 

up to 0.29 mm2 per pixel.  A series of modulated intensity images corresponding to 

optical path differences (OPDs) are collected on the FPA, forming an interferogram at 

each pixel. A hyperspectral data cube is comprised of a stack of 2D images 

corresponding to different optical path differences.  The rate at which a data cube can be 

acquired is dependent on spectral resolution, FPA integration time, and the number of 

pixels within the image.  On typical instrument framing rate of 50 kHz  and ~ 10,000 

OPDs yields hyperspectral data cubes at 2.5 Hz, for 2 cm-1 and a 32 x 32 pixel field of 

view.  Fast Fourier Transform (FFT) of each pixel’s interferogram produces a raw 

spectrum, which is then calibrated with two internal wide-area black body sources at 

known temperatures. Using established radiometric calibration procedures the spectrally 

dependent gain and background for each pixel are determined [19].  The raw spectrum is 

divided by the gain and subtracted by the offset to convert the spectra into absolute units 

of spectral radiance (W/(cm2 sr cm-1)).  Using a 0.3 optical density neutral density (ND) 

filter the 16-bit FPA saturates with 65,000 counts at 300 µW/(cm2 sr cm-1), with a 

background radiance of 6 µW/(cm2 sr cm-1).  For gas plume temperatures near 1000 K, 

the DC component of the interferogram represents 28 % of the dynamic range, with the 

interferometer producing an 8 % modulation at zero optical path difference (ZPD). 

In the current work, we demonstrate the potential of IFTS for monitoring thermal 

decomposition and combustion in the gas plumes generated by laser irradiation of 
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polymers and graphite targets.  The effectiveness of high energy lasers to render a target 

nonfunctional depends on propagation of the laser through these evolving gas plumes, 

heat released in exothermic gas phase reactions, and changes to surface oxidation kinetics 

[1-3, 14, 20, 21].  Extension of the IFTS instrument to these laser-material interactions 

requires: (1) application to short focal distances (a few meters rather than the kilometer 

paths used for smokestack and jet/rocket engine observations) [12, 13, 16], (2) high 

spatial resolution (~ 1 mm sampling for laser spot sizes of 1-10 cm), (3) handling large 

changes in source radiance (pre and post combustion) and managing the instrument 

dynamic range, (4) evaluating high gas temperatures (> 2800 K) and large temporal-

spatial variations in column density for various materials including: graphite, carbon 

composites, painted metals, and polymers films [22-24], and (5) radiative modeling of 

complex hydrocarbon spectra and kinetics. 

To accomplish this work we collaborated with the Air Force Research Laboratory 

(AFRL), Laser Effects Branch (RDLE) at Kirtland Air Force Base (KAFB), NM.  

Experiments were carried out at their HEL testing facilities to investigate emissive 

plumes from laser irradiated targets.  By deploying the Air Force Institute of Technology 

(AFIT) hyperspectral instruments we were able to: (1) conduct experiments with polymer 

and graphite targets, (2) identify molecular emitters in the gas-phase plume generated 

from laser lethality experiments, (3) employ radiative transfer models to quantify the 

plume temperature and effluents concentration along the boundary layer, (4) produce 

two-dimensional spatial maps of plume temperature and molecular species, (5) 

demonstrate the feasibility to study the kinetics interplay of pre-combustion and 
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combustion gases from laser irradiated targets.  These combined efforts enable new 

predictive capabilities for the laser lethality community. 

Key contributions to the field are: (1) benchmarking hyperspectral imagery to 

laser lethality experiments, (2) development of the first two-dimensional spatial maps of 

temperature and effluents concentrations of the evolve boundary layer plume from laser 

irradiated targets, (3) kinetics interpretation at high spatial resolutions from experimental 

observations.  This research advances the understanding of the fundamental mechanism 

of laser irradiated-materials from hyperspectral imaging observations.  The current work 

establishes a robust foundation for future experiments aimed to close the gap between the 

empirical lethality databases and fundamental modeling with predictive capabilities.  As a 

result, the combustion kinetics in laminar flows can be explored to merge experiments 

with detail reactive fluid dynamics simulations. 

Document Overview 

Chapter II provides the background material on imaging Fourier transform 

infrared spectroscopy (IFTS).  Basic review of laser materials interaction, properties of 

fiberglass, poly(methyl methacrylate) and graphite targets, and a literature survey on the 

kinetics of oxidation of carbon.  A review of AFIT’s prior research efforts with the IFTS 

instrument is also presented. 

A separate chapter is devoted to each of the materials studied.  The results for 

FRP, PMMA, and porous graphite are presented in Chapters III, IV and V, respectively.  

These chapters have been submitted for peer review or are about to be submitted for 

publication, and therefore include some redundant material provided elsewhere in this 
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document.  The purposes of these chapters are to demonstrate the use of hyperspectral 

IFTS of laser lethality experiments. 

The proof of concept and feasibility of the use of IFTS in laser lethality 

experiments are discussed in chapter III, which has been accepted for publication [25].  

By monitoring the evolved plume of laser irradiated fiberglass composite targets, 

molecular species in the plume were identified from their spectral signatures in the mid-

wave infrared (MWIR).  Following identification of the molecular species, a simplified 

line-by-line radiative transfer model (LBLRTM) [26, 27] was developed to extract 

profiles of temperature and effluents column densities.  For a single data cube, spatial 

maps of pre-combustion gas temperature and column densities of CO and CO2, were 

developed from LBLRTM.  To partially illustrate the evolving plume, the temporal 

dependence of temperature and column densities for a single pixel was explored.  Our 

empirical observations were validated with prior FTIR fiberglass study [24].   

Chapter IV discuss the laser radiative oxidative decomposition of poly(methyl 

methacrylate) (PMMA) and the effects of power density on the evolved plume from IFTS 

observations [28].  Carbon black pigmented PMMA targets were irradiated with a 1.06 

µm fiber laser from 4 to 22 W/cm2.  Strong spectral emission of the monomer methyl 

methacrylate (MMA) was observed in the infrared.  Assuming a homogeneous single 

layer plume, a simplified radiative transfer model was developed.  The spectral model 

was used to compute the gas emissivity using data from an experimentally measured, 

interpolated and extrapolated MMA absorption coefficient database.  Spatial maps of 

plume temperature and MMA column densities were developed for laser irradiated 
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surfaces at 4 - 22 W/cm2.  Also, we demonstrated the use of IFTS to obtain surface 

temperature of laser irradiated PMMA.  By fitting the observed spectra with Planck’s 

distribution, we were able to produce spatial and temporal distributions of surface 

temperature as well to estimate the beam profile.  This work demonstrated the feasibility 

of investigating the kinetics of MMA formation at discrete pixels in the surface-boundary 

layer.  The obtained effective activation energies were consistent with current established 

PMMA decomposition kinetics. 

Chapter V culminates our work with the combustion mechanism of laser 

irradiated graphite targets from imaging FTIR observations [29].  We compare our results 

against well established kinetics mechanism for the oxidation of graphite.  Porous 

graphite targets were irradiated using a 1.07 µm 20-kW ytterbium fiber laser.  The 

combustion plume characteristics of irradiated porous graphite is discussed from high-

speed infrared and visible imagery and documented for first time.  A homogeneous 

single-layer plume LBLRTM was developed to estimate spatial maps of temperature and 

column densities of CO and CO2 from hyperspectral IFTS. Also, we validated the use of 

statistical narrow-band models (EM2C and RADCAL) [30, 31] with experimental 

combustion data at temperatures as high as 2900 K.  Systematic errors associated with the 

spectral models are discussed. Kinetics interplay between heterogeneous and 

homogeneous combustion kinetics are shown from experimental observations at high 

spatial resolutions.  Overall the boundary layer profile at steady-state is consistent with 

CO being mainly produced at the surface-boundary layer by heterogeneous reactions 

followed by a rapid homogeneous combustion in the boundary layer towards buoyancy. 
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An overall conclusion of the work and summary of the results is presented in 

chapter VI along with recommendations for future studies in a laminar flow.  Following 

the conclusion are appendices showing earlier proof of concept work that was published 

as a proceeding article focused on a qualitative analysis of painted and unpainted 

fiberglass targets [32].  Also, preliminary graphite experiments observations in a tube 

flow are documented to facilitate the planning of future systematic laminar flow 

experiments.         
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II. Background 

Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) measures the vibrational 

frequencies at which a sample (solid, liquid or gas) absorbs or emits infrared radiation.  

These vibrational frequencies are useful to identify molecular species composition and 

concentrations.  In principle, FTIR spectrometers are based on a Michelson 

interferometer [33-35], a schematic diagram is shown in Figure 1.  A Michelson 

interferometer typically consists of a translating mirror, beamsplitter, and a detector.  The 

incident beam of radiation is divided into two paths by the beamsplitter, which travels to 

the fixed and moving mirror.  These two beams are then recombined after an optical path 

difference (OPD) has been established [36].  The OPD between the two beams is defined 

as the position of the translating mirror with respect to the beam splitter.  It can be 

expressed as OPD = d1-d2, where d1 and d2 are the respective distances of the moving 

and fixed mirror with respect to the beam splitter.  By scanning the translating mirror, an 

interference pattern is produced between the two beams.  The variation in intensity of the 

beam as a function of number of OPDs is recorded by a detector, in which the spectral 

information is encoded.  This is known as an interferogram or an interference pattern. 
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Figure 1.  Schematic of Michelson interferometer 

  

To obtain a spectrum, a fast Fourier transform (FFT) is applied to the resulting 

interferogram.  Cooley and Tukey [37] developed an FFT algorithm that is commonly 

used in FTIR, substantially reducing computation time as opposed to using the classical 

discrete Fourier transform method.   Figure 2 shows the observed signal from the detector 

as a function of number of OPDs (number of frames).  The center burst of the 

interferogram contains a broadband source where all wavelengths are phase at zero path 

difference (ZPD).  Most of the useful spectral information is contained at the wings of the 

Detector

Source

Be
am
sp
lit
te
r

Fixed
mirror

Moving
mirror

d2

d1



 

 11 

interferogram where the amplitude is lower.  The FFT to the interferogram results in a 

spectrum, shown in Figure 3.  The corresponding spectral emission of gaseous molecuar 

species is shown in Figure 3 for CO and CO2.  The spectral emission in Figure 3 

corresponds to a combustion flame.  

 

 

 

Figure 2 Interferogram as a function of number of OPD 
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Figure 3 FTIR spectra of a combustion plume 

 Non-imaged FTIR spectroscopy has been used to investigate the temporal 

evolution of combustion gases by the Federal Aviation Agency (FAA) for cargo air 

protection applications [38].  Toxicity evaluation of combustion gases generated from 

burning materials requires fast framing and high spectral resolutions for early detection 

and accurate identification of volatile fuels.  In combustion gases, emission of H2O, CO 

and CO2 are present, which have been monitored from FTIR measurements.  Fourier 

transform spectroscopy is a well established characterization technique to investigate the 

rapid changing combustion gases.  However non-imaged FTIR acquires data with a 
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single detector, where the scene is spatially averaged.  This becomes a challenge for laser 

lethality experiments since spatial information from the evolved surface-boundary layer 

plume is lost.  This can be overcome with the recent development of imaging FTIR 

spectrometers, where a single detector is replaced with a focal plane array (FPA) where 

each pixel correspond to a single spectral point in space.  Another advantage from IFTS 

is that the high-speed broadband infrared imagery (DC+AC) reveals plume dynamics 

such as turbulent motion.  Laser lethality experiments can benefit from imaging FTIR to 

investigate the evolved boundary layer plume at high spatial resolutions.   

 Imaging FTIR has the potential to measure both spatial and temporal variations in 

temperature, chemical species concentrations, and the ability to spectrally identify 

molecular species at high resolution and fast framing rates [4, 5].  Some of the benefits of 

hyperspectral imagery for examining laser lethality combustion events are: (1) turbulence 

in plume dynamics can be studied from high-speed broadband imagery contained in the 

interferogram cubes, (2) narrow instantaneous field-of-view (IFOV) simplifying spatial 

averaging as well the spectral interpretation for large variations in the temperature and 

density of combustion plumes, and (3) construction of two-dimensional dynamics of the 

evolved species in the gas phase to predict the chemical kinetics interplay [12]. 

Laser Materials Interaction 

The use of Laser weapons has been attractive for military operations, particularly 

for engaging close-in maneuvering targets and fast ballistic targets.    However, laser 

lethality require depositing sufficient energy or a dwell time to render a target non-

functional [2].  Lasers allow acquiring targets very quickly due to the few moving 
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mechanical parts in laser weapons systems.  Laser weapons systems have a low 

incremental cost per shot when compared with advanced missile systems [39].  

Nonetheless, laser weapons effectiveness can be limited due to: atmospheric attenuation 

and turbulence, line-of-sight dependence, target suitability, and laser wavelength 

selection. 

Laser lethality can lead to a variety of effects in the ablated material.  This 

includes a number of complex process such as oxidation, vaporization, melting, expulsion 

of molten material, and breakdown/removal of an oxide layer [1-3].  Laser ablation will 

lead to the formation of a plume that expands out from the surface. Ejection of surface 

material is due to the ablation pressure generated by the expansion of the gas at the 

surface-boundary layer.  Therefore it is important to understand the plume characteristics 

generated from laser ablation above the surface.  As the plume evolves from the surface, 

it absorbs the incident radiation, thus reducing the absorbed energy at the material surface 

[1]. 

Chemical lasers have been used in laser weapons systems due to the very high 

energy derive from the chemical reactions that produce up to megawatts of power [39].  

There has been a growing interest in scaling solid state fiber lasers to high power.  

Moreover, these can be powered from the aircraft electrical power source as opposed to 

carrying large amounts of payloads needed with chemical lasers.  Recent improvements 

in solid state lasers, promise to provide effective laser weapons in the near-IR since these 

are light enough to be mounted on smaller air vehicles platforms.  Therefore, there is a 
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growing interest to scale laser lethality experiments in the near-IR wavelength using fiber 

lasers with advanced materials such as polymers and carbon rich targets. 

Experiments aimed to understand the interaction of laser weapons with advanced 

targets has been made with composite materials.  For example, previous experiments with 

polymer targets have shown an increase in plume temperature above steady surface 

temperature, likely due to gas phase plume absorption of the incident radiation [25, 28, 

40].  Similar results have been observed from the evolved combustion plume of laser 

irradiated graphite targets [29].  Several experimental techniques has been used to 

monitor the evolve plume from laser ablation [41-43].  However none of these offer the 

ability to explore the plume kinetics at high spatial resolutions to validate reactive fluid 

dynamics models.  Moreover, as a consequence of laser ablation, a chemical reaction 

could occur with its surroundings producing a gas phase combustion plume above the 

surface.  This exothermic reaction emits very strongly in the infrared, thus allowing 

identification of molecular species associated with combustion, such as CO, CO2 and 

H2O.  Imaging FTIR promises to be a novel technique to investigate the evolved plume 

from laser irradiated materials [25, 28, 29, 32]. 

In order to validate modeling with empirical databases on laser lethality, it is 

important to understand the interplay between laser wavelength, type of material, and 

flow conditions where laser ablation occurs.  For that reason, we aim to understand 

emissive plumes above the surface of laser irradiated polymers and carbon rich targets 

using novel molecular spectroscopy techniques to validate empirical models with global 

kinetics in an oxidizing environment. 



 

 16 

Plume kinetics fluctuates with the type of target and material properties.  

Preliminary qualitative results reveal that the addition of paint in fiberglass targets had an 

effect on the combustion rate during laser heating experiments [32].  Painted fiberglass 

composite targets self-ignited 4 s earlier than unpainted fiberglass samples.  The current 

work is focused on the plume evolution above the surface from laser irradiated fiberglass, 

PMMA and graphite targets.  These materials are discussed further below. 

Fiberglass 

Few combustion studies have been made with composite materials, such as 

fiberglass reinforced polymers (RFP) [24, 40].  Kinsella et al. [24] applied a radiant flux 

to study the combustion of silicone-, melamine-, and epoxy-fiberglass composites by 

focusing a 600 W tungsten-halogen lamp over a 25 mm diameter area.  These materials 

are used in the construction of aircrafts, boats, and military vehicles.  Some visible 

physical observation on the surface of these fiberglass composites during irradiation are 

bubbling, charring, out-gassing, laminate separation, and spontaneous ignition.  The 

combustion of these three fiberglass samples was monitored by non-imaging FTIR.  

Where the products evolving above the surface in the gas phase were identified from their 

corresponding spectra. 

 Fiberglass is primarily composed approximately of 50 % by weight of silica 

(SiO2) with other inorganic and trace components as shown from Table 1 [41].  

Additionally, fiberglass composite materials may contain sizings, binders, or flame 

retardants as well organics components [42].  Fiberglass reinforced polymers have a 

complex chemical structure [24, 43].  Moreover fiberglass is generally composed of 
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adhesive joints with many components [43] and multiple interfaces, typically epoxy or 

polyester based [24, 40]. 

Table 1. Typical fiberglass composition  
in percent by weight [41] 

Inorganic composition wt % 

Silica (SiO2) 54.0 % 

Calcium Oxide (CaO) 20.5 % 

Alumina (Al2O3) 14.0 % 

Boron Oxide (B2O3) 8.0 % 

Soda (Na2O) 1.0 % 

Calcium Fluoride (CaF2) 1.0 % 

Magnesia (MgO) 0.5 % 

Minor oxides (K2O, SO3, Fe2O3) 1.0 % 

 

The combustion characteristic of polyester-based fiberglass composite materials 

has been described by Landrock [44] as burning with a smoky flame, accompanied by 

melting, dripping and some char formation. Combustion products of polyester-based 

materials have been reviewed elsewhere [45-47], containing organic components such as 

C6H6 (benzene), (C6H5)2 (biphenyl),  C6H5CH2CH3 (ethyl benzene), C5H8 (pentadiene), 

C6H5CH=CH2 (styrene), and CH3 (toluene).  It has been reported that these composite 

materials have a flash-ignition temperature of approximately 648 K (375 oC) and a self-

ignition temperature of approximately 758 K (485 oC) [40, 41]. 
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Fourier transform spectroscopy has the ability to distinguish the ro-vibrational 

bands of diatomic and polyatomic molecules in the infrared spectrum, allowing 

quantification of the chemical species concentration as function of time [48].  Most of the 

FRP combustion products are classified as toxic products.  Consequently, spectral 

identification plays an important role for early detection applications [24, 40, 49, 50].  To 

the author's knowledge, laser induced combustion of fiberglass targets has not been 

investigated before. 

Poly(Methyl Methacrylate) 

Laser lethality experiments with PMMA, has been made with continuous wave 

(CW) CO2 lasers at the longer wavelength of 10.6 µm [51-56], yet very few studies at the 

near-infrared wavelength of 1.06 µm [57-59].  This is mainly due to the poor absorption 

characteristic of organic materials in this region.  Because of this, pigments are 

commonly added to acrylic thermoplastics for absorption in the near-IR.  The reported 

average composition of black PMMA from elemental analysis are shown in Table 2 [60].   

When polymers are irradiated, the incident energy is absorbed at the surface, 

generally to a depth of micrometers.  According to Said-Galiev and Nikitin [61], the 

depth of absorption in the material follows the Beer-Lambert law as defined by Equation 

(1): 

I(z) = I0 exp(−α ⋅ z)      (1) 

where, I(z) is the irradiance (W/cm2) at depth z (cm), I0 is the incident irradiance (W/cm2), 

and α is the absorptivity (cm-1) of the material.  Ablation of polymeric materials with a 

CO2 laser are discussed elsewhere [61].  
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Table 2. Elemental analysis of black PMMA [60] 
Elements Composition (wt %) 

Carbon (C) 59.1 

Hydrogen (H) 7.9 

Oxygen (O) 31.9 

Nitrogen (N) < 0.3 

Sulfur (S) < 0.2 

Chlorine (Cl) 0.1 

Water (H2O) 0.6 

Total < 100.1 

 

 Typically, polymers have low thermal conductivity, which means that the effects 

related to ablation are surface effects.  Therefore the kinetics and mechanism of laser 

irradiation vary depending on the chemical structure and thermophysical properties of the 

material.  The absorptivity of clear PMMA varies depending on the type of laser 

wavelength used, a value of 250 cm-1 was obtained with a CO2 laser (10.6 µm), whereas 

values of ~ 25 cm-1 were assumed for hydrogen fluoride (HF) and deuterium fluoride 

(DF) chemical lasers at wavelengths of 2.7 µm and 3.8 µm, respectively [62].  When 

thermoplastic polymers were irradiated with a CO2 laser, Cozzens and Fox [63] reported 

that no breakdown happened between 3-7 W/cm2, but at 5-11 W/cm2 a softening 

occurred; at the higher irradiance of ~ 22-25 W/cm2, the material decomposed and 

vaporized.  
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Poly(methyl methacrylate) (PMMA) is an inexpensive thermoplastic that 

decomposes around 493 K [64].  In the presence of oxygen, the main decomposition 

product is the monomer methyl methacrylate (MMA) [65].  Molecular oxygen exerts a 

stabilizing effect on PMMA against depolymerization at low temperatures [66-68], thus 

increasing the initial decomposition temperature when compared to that for thermal 

degradation in an inert gas.  Methyl methacrylate further decomposes to combustible 

gaseous hydrocarbon species.  These hydrocarbon fuels react with oxygen to create CO, 

CO2 and H2O from combustion.  Thermal decomposition kinetics of PMMA has been 

reviewed in detail elsewhere [69].  In general, PMMA decomposition can be summarized 

by reaction (2) [70]: 

 

PMMA→ MMA→ HC→CO,CO2,H2O    (2)   

where, PMMA decompose primarily to MMA, then MMA decompose to small 

combustible HC fuels and an exothermic reaction will lead to the combustion products of 

CO, CO2 and H2O. 

Graphite 

 Combustion from laser-irradiated graphite targets using a 5 kW CO2 laser (beam 

area of 11.6 cm2) were investigated by Caminat et al. [71].   Cylindrical graphite targets 

of 8 cm diameter x 5 cm height with low porosity and impurities (< 100 ppm) were 

exposed to a radiant flux.  A set of experiments consisted of irradiating the surface from 

78 to 418 W/cm2 for 300 s.  In order for a sizeable combustion plume to occur, at least an 

irradiance of 181 W/cm2 was required [71].  Several mechanisms have been discussed for 
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the graphite oxidation kinetics [72].  However, whether or not CO and CO2 are the 

primary products from the oxidation of carbon it still a debate in the literature today [73].  

It has been accepted as general consensus that for temperatures greater than 1200 K, the 

CO2 production is small [74], but at lower temperatures both CO and CO2 are present [75, 

76].  On the other hand, several authors indicate that both CO and CO2 are primary 

products of the surface heterogeneous reaction [75-79].  The primary product ratio of 

CO/CO2 has been measured experimentally by many investigators and expressed 

empirically for the relative rates at which CO and CO2 are produced by the Arrhenius 

relation of CO/CO2 = A exp(-Ea/RT), where A and Ea are the pre-exponential and 

effective activation energy obtained empirically.  According to Arthur [74], the CO/CO2 

ratio increases with temperature and the effective activation energy is, Ea = ECO2-ECO, 

which is estimated from the slope of the Arrhenius relationship by the least square 

method.  The resulting effective activation energy, Ea, is for the production of CO and 

CO2 from the heterogeneous reaction at a measured temperature range.  For example, the 

empirical relationship from Arthur [74] is defined as: [CO]/[CO2] = 2500 exp(-6240/T), 

where at T = 800 K, [CO] = [CO2], and at T = 1700 K CO was found to be 64 times 

higher than CO2.     

 Li et al. [72] discussed the surface oxidation mechanism of graphite from 

gravimetric and temperature-programmed desorption experiments.  The oxidation 

mechanism is based on the formation and dissociation of oxide complexes from Lear et 

al. [80]:   

*C +O2↔k−3

k3
*C(O2 )        (3) 



 

 22 

*C(O2 )→
k4
*C(O)+CO       (4) 

*C(O)→
k5
CO         (5) 

*C(O) →
*C (O2 ),k6

CO2        (6) 

*C +O2 →
*C (O ),k7

CO2       (7) 

Molecular oxide complexes initially form in reaction (3), but these complexes rearrange 

to form a stable atomic–oxide complex and evolve CO, in reaction (4). The stable oxide 

complex may subsequently desorb from the surface by reaction (5) or be involved in the 

evolution of CO2 by reaction (7), where *C is a free carbon site, *C(O2) is a dioxygen 

surface complex and *C(O) a stable oxide surface species. 

       Tucker and Mulcahy [81] suggested that oxygen molecules directly react with 

labile carbon atoms (*C) producing CO and leaving O atoms attached to the carbon 

surface (*C(O)) by reaction (8) according to  

2*C +O2 ↔ *C(O)+CO       (8) 

Ahmed and Back [82] concluded that molecular oxygen initially adsorbs on the carbon 

surface (reaction (3)) and then slowly rearranges to a stable complex involving oxygen 

atoms from reaction (9): 

*C +*C(O2 )→ 2*C(O)       (9) 

Eisenhut [83] combined this previous reaction with reaction (3) and proposed the 

following reaction: 
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2*C +O2 ↔ 2*C(O)       (10) 

On the other hand, the mechanism for formation of CO2 at the surface is poorly 

understood.  For the evolution of CO2, Vastola et al. [84] proposed: 

2*C(O)→CO2 +*C       (11) 

Marsh [85] agreed with the previous step and added the following two reactions: 

*C(O)+CO→CO2 +*C      (12) 

2*C(O)+ 1
2
O2 →CO2 +*C      (13) 

Carbon dioxide (CO2) formation requires collisions of the stable oxide complex with gas-

phase species.  Ahmed and Back [82] added another reaction step involving both *C(O) 

and *C(O2) complexes and provided the following variation for primary CO2 formation: 

*C(O)+*C(O2 )→CO2 +*C(O)     (14) 

*C +*C(O)+O2 →CO2 +*C(O)     (15) 

Lear et al. [80] proposed that a source of CO2 is produced from direct reaction of *C(O2) 

with O2: 

*C(O2 )+
1
2
O2 →CO2 +*C(O)     (16) 

Du et al. [86] proposed a mechanism involving direct reaction of O2 with carbon sites: 

*C +O2 →CO2      (17) 



 

 24 

Furthermore, graphite combustion models are typically based on elementary reactions or 

semi-global models [78, 79, 87-89].  For simplicity, established global kinetics are 

considered and compare with experimental results obtained from IFTS observations.  The 

simplified global heterogeneous  [90-93] and homogeneous [94-96] reactions of carbon 

oxidation considered in this work are summarized in Table 3. 

 

Table 3.  Global heterogeneous and homogeneous reactions for the oxidation of 
carbon, where kj = k0,j exp(-Ej/R) 

Reaction k0,j -Ej/R (K) Reference 

α + β
α 2 + β

C(s ) +O2 →
α

α 2 + β
CO + β

α 2 + β
CO2  3.01 x 105 

m/s 

17,966 [90-93] 

CO +1 2O2 →CO2  1.3 x 1011 

m3/(kmol s) 

15,098 [96] 
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III.  Gas Phase Plume From Laser Irradiated Fiberglass Reinforced Polymers via 

Imaging Fourier-Transform Spectroscopy 

Preface 

 A reformatted version of the original published manuscript in Applied 

Spectroscopy is presented in this chapter [25].  As the lead author my contributions were 

to collect and post-process the experimental data, hence contributing with the co-authors 

in the analysis, interpretation and discussion of the results.  Emissive plumes from laser 

irradiated fiberglass reinforced polymers (FRP) were investigated using a mid-infrared 

imaging Fourier-transform spectrometer, operating at fast framing rates (50 kHz imagery 

and 2.5 Hz hyperspectral imagery) with adequate spatial (0.81 mm2 per pixel) and 

spectral resolution (2 cm-1).  Fiberglass reinforced polymer targets were irradiated with a 

1064 nm cw Nd:YAG laser for 60 s at 100 W in air.  Strong emissions from H2O, CO, 

CO2 and hydrocarbons were observed between 1800 cm-1 and 5000 cm-1.  A single-layer 

radiative transfer model was developed for the spectral region from 2000 to 2400 cm-1 to 

estimate spatial maps of temperature and column densities of CO and CO2 from the 

hyperspectral imagery.  The spectral model was used to compute the absorption cross 

sections of CO and CO2 using spectral line parameters from the high temperature 

extension of the HITRAN database.  The analysis of pre-combustion spectra yields 

effective temperatures rising from ambient to 1200 K and suddenly increasing to 1515 K 

upon combustion.  The peak signal-to-noise ratio for a single spectrum exceeds 60:1, 

enabling temperature and column density determinations with low statistical error.  For 

example, the spectral analysis for a single pixel within a single frame yields an effective 
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temperature of 1019 ± 6 K, and CO and CO2 column densities of 1.14 ± 0.05 and 1.11 ± 

0.03 x 1018 molec/cm2, respectively. Systematic errors associated with the radiative 

transfer model dominate, yielding effective temperatures with uncertainties of > 100 K 

and column densities to within a factor of 2-3.  Hydrocarbon emission at 2800 to 3200 

cm-1 is well correlated with CO column density. 

Introduction 

 Imaging Fourier-transform spectrometers (IFTS) have recently been developed with 

the ability to measure spatial and temporal variations in plume temperature and molecular 

species concentrations, with fast framing rates [4-7].  The coupling of the focal plane 

array (FPA) to a Michelson interferometer enables collection of spectra at all pixels 

simultaneously, thus providing precise characterization of emissive infrared plumes.  

Hyperspectral IFTS imagery in the mid-infrared from an industrial smokestack has been 

analyzed to extract temperatures to within a few degrees and concentrations of strong 

emitters with statistical uncertainties of 1 - 6 % [16].  Jet engine exhaust has also been 

analyzed with similar uncertainty despite the presence of significant turbulence [12-15].  

For cases where scene fluctuations are driven by a random global parameter, such as 

temperature, one can take advantage of the DC-coupled interferograms (modulated 

image) to extract turbulence information [12].  Recently there has been a growing interest 

in measuring gaseous emission of flares [17] and laminar flames [18] to identify and 

quantify such emissions.    Mass flow rates from gaseous emitters in flares were obtained 

by integrating the plume speed and column density profiles with a combustion efficiency 

of 85 % and 16 % uncertainty [17]. Temperature and concentrations of H2O and CO2 
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were estimated for an ethylene flame produced by a Hencken burner [18].  Finally, 

imaging FTIR may also add key fidelity to recent fast framing FTIR studies of detonation 

fireballs and muzzle flash [8-11, 97]. 

 In the current work, we evaluate the potential of IFTS for monitoring thermal 

decomposition and combustion in the gas plumes generated by laser irradiation of 

surfaces containing carbon or hydrocarbon materials.  The effectiveness of high energy 

lasers to render a target nonfunctional depends on propagation of the laser through these 

evolving gas plumes, heat released in exothermic gas phase reactions, and changes to 

surface oxidation kinetics [1-3, 14, 20, 21].  Extension of the IFTS instrument to these 

laser material interactions requires: (1) application to short focal distances (a few meters 

rather than the kilometer paths used for smokestack and jet/rocket engine observations) 

[12, 13, 16], (2) high spatial resolution (~ 1 mm sampling for laser spot sizes of 1-10 cm), 

(3) handling large changes in source radiance (pre and post combustion) and managing 

the instrument dynamic range, (4) evaluating high gas temperatures (> 2800 K) and large 

temporal-spatial variations in column density for various materials including graphite, 

carbon composites, painted metals, and polymers films [22-24], and (5) radiative 

modeling of complex hydrocarbon spectra and kinetics.  In the present work, we 

demonstrate the first use of IFTS to reveal complex pre-combustion dynamics of the 

evolved molecular species in the gas phase for laser irradiated fiberglass reinforced 

polymers (FRP).  Following identification of gaseous species in the plume [32], a 

simplified line-by-line radiative transfer model is developed to obtain spatial maps of 

temperature and effluents column densities.  For a single pixel above the surface, the 
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temporal dependence of the gas temperature and column densities is developed. 

Two-dimensional imaging of combustion plumes above laser irradiated samples 

in laminar shear flow would be particularly useful in developing specie and temperature 

profiles in the boundary layer and benchmarking reactive fluid dynamic calculations. For 

example, the kinetics of combustion above graphite samples in M = 0.2 - 0.9 laminar 

flows is of particular interest to both the combustion and laser communities.  In this 

application, lateral observations with column densities and temperatures averaged over 

nearly constant line-of site conditions would lead to well quantified results.  However, 

such studies require high laser fluence, ~ 1 kW/cm2 to achieve surface temperatures of T 

= 2000 – 4000 K, and spatial resolution of ~ 0.1 mm.  As part of an effort to develop 

IFTS for this application, we begin with this study of buoyant flow above fiberglass, 

requiring laser fluences of ~ .04 kW/cm2 and spatial resolution of a > 1 mm.   

Lateral, line-of-sight observations are also necessary for the interpretation of IFTS 

surface measurements.  The estimation of front surface temperatures are complicated by 

evolving surface emissivity and intervening gas plume emissivity.  By monitoring the gas 

plume from the side, much of the information necessary for separating surface 

temperature from gas emissions becomes available.  The present work seeks to begin the 

development of IFTS for these applications. 

 Prior experimental efforts have been aimed to understand the combustion products 

of composite materials, such as fiberglass reinforced polymers but are rather limited [24, 

40].  Fiberglass polymeric materials may contain sizings, binders or flame retardants and 

organic components [42], resulting in a complex chemical structure [40, 43].  Fiberglass 
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reinforced polymers are typically epoxy or polyester based, comprised of adhesive joints 

with many components and multiple interfaces [24, 40].  Landrock et al. [44] described 

the combustion characteristic of polyester based-FRP as burning with a smoky flame, 

accompanied by melting, dripping and char formation.  Combustion products of 

polyester-based materials have been reviewed elsewhere [45-47], containing organic 

components such as C6H6 (benzene), (C6H5)2 (biphenyl),  C6H5CH2CH3 (ethyl benzene), 

C5H8 (pentadiene), C6H5CH=CH2 (styrene), and C6H5CH3 (toluene).  It has been reported 

that these composite materials have a flash-ignition temperature of approximately 648 K 

and a self-ignition temperature of approximately 758 K [40, 44]. 

Experimental 

 An schematic diagram illustrating the experiment set-up is shown in Figure 4.  

Epoxy fiberglass reinforced composite samples of 6.45 cm2 were positioned normal to 

the incident laser beam.  A 1064 nm cw Nd:YAG laser with a flat top beam (2.14 cm  x 

1.80 diameter) heated the surface for 60 s in air at atmospheric pressure with an 

irradiance of 45 W/cm2.  Figure 5a illustrates a visible image of the laser induced hot spot 

on the fiberglass sample.  A room temperature graphite plate was positioned behind the 

plume for the emission measurements.  A fume hood was placed above the sample to 

slowly vent the plume.  Additional details regarding the fiberglass samples have been 

reported [32]. 

 A Telops, Inc (Quebec, Canada) Hyper-Cam IFTS with spectral response ranging 

from 1800 to 6667 cm-1 (1.5 to 5.5 µm) was used to observe the resulting gas plume.  It 

features a 320 x 256 InSb FPA that was narrowed to a 32 x 32 pixel window size with a 



 

 30 

focal distance of 3.12 m.  The individual pixel field of view (FOV) was 0.326 mrad, 

yielding a spatial resolution of 0.9 mm per pixel.  A series of modulated intensity images 

corresponding to optical path differences were collected on the FPA, forming an 

interferogram at each pixel.  Fast Fourier Transform (FFT) of each pixel’s interferogram 

produces a raw spectrum which was calibrated for absolute spectral radiance (µW/(cm2 sr 

cm-1)) with two internal wide-area black body sources at 333 and 363 K. Established 

radiometric calibration procedures are employed to determine the spectrally dependent 

gain and background for each pixel [19]. 

 

Figure 4.  Schematic diagram of the experimental apparatus.  The imaging Fourier 

transform spectrometer is positioned to observe the surface-gas boundary layer, with a 

spatial resolution of 0.9 mm per pixel.  The fiberglass surface is normal to the laser beam, 

with an irradiance of 45 W/cm2.  A cold graphite plate is positioned within the instrument 

FOV. 
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Figure 5.  Visible images of: (a) the laser irradiated fiberglass sample, (b) the optically 

thin, smoky plume before combustion, and (c) the optically thick plume after ignition. 

 

A hyper-spectral data cube was acquired every 0.4 s.  Each cube is comprised of a 

stack of 2D images (32 x 32 pixels in the (x,y) plane) corresponding to different optical 

path differences.  The rate at which a data cube can be acquired is dependent on spectral 

resolution, FPA integration time, and the number of pixels within the image.  In the 

current work, data was collected with fast framing rates of 50 kHz, spectral resolution of 

2 cm-1, and an integration time of 20 µs per frame.  The 16-bit FPA using a 0.3 optical 

density neutral density filter saturates with 65,000 counts at 300 µW/(cm2 sr cm-1), with a 

background radiance of 6 µW/(cm2 sr cm-1).  For the typical conditions encountered in 

this study with gas plume temperatures near 1000 K, the DC component of the 

interferogram represents 28 % of the dynamic range, with the interferometer producing 

an 8 % modulation at zero optical path difference (ZPD).  Additional instrument details 

have been reported previously [4, 5]. 
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The imaging properties of the IFTS instrument are defined by optics aft of the 

interferometer and before the InSb array.  The effective focal length is 76 – 86 mm, for 

objects at 3 m and infinity, respectively.  Spatial resolution is approximately twice the 

diffraction limit, with 73% of the energy at 4.3 µm from an on-axis pixel delivered to a 

single pixel.  Variation in spatial resolution across the central 32 x 32 pixels is less than 

1%.  The point spread function changes by less than 5% along a 5 cm depth of field.   

The pre-combustion plumes are not spatially uniform with unstable, turbulent 

characteristics as shown in Figure 5b.  The IFTS instrument observes emission from a 

column in the y-direction to produce an image in the (x,y) plane. Temperature and 

concentration gradients in the y-direction are averaged along this line of sight.  A simple 

radiation transfer model is developed below to interpret the images and report column 

densities and effective temperatures.  The temperatures represent a nonlinear weighting 

of pixel temperatures along the line of sight with regions of higher temperature and less 

optical thickness along the path to the sensor weighted more heavily.  After ignition, the 

plume becomes optically thick, as seen in Figure 5c.  

Results and Discussion 

Spectral Assignments 

 A single, un-processed image (32 x 32 pixels) captured at an optical path difference 

of 0.25 cm during laser irradiation at 24 s is shown in Figure 6.  The plume structure is 

clearly evident, with the effect of buoyancy (and the fume hood flow towards the vertical 

y-direction) observed in the shape of the plume.  A square box at (x,y) = (1.8 mm, 12.6 

mm) indicates the most intense plume emission and the corresponding un-calibrated 
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spectrum is provided in Figure 7. 

 

 

Figure 6.  Single broadband image of an interferogram in the far DC wing for laser 

irradiated fiberglass reinforced polymer at 24 s. The plume extends above the surface 10 

mm in the x-direction and above 25 mm in the y-direction.  

 

 

 Emission from gaseous H2O, CO, CO2, and hydrocarbon effluents are readily 

identified by their corresponding rotational-vibrational spectral signatures.  The most 

easily recognizable spectral features are the P- and R- branch emission lines arising from 
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the fundamental CO band between 2000 cm-1 and 2220 cm-1.  The R- branch of CO lies 

near the antisymmetric stretching band of CO2 (ν3) and is strongly overlapped with the 

intense CO2 spectrum, whereas the P- branch of CO suffers little CO2 interference [98].  

A portion of the CO2 emissions is highly absorbed by the colder atmospheric CO2 near  ~ 

2300 - 2365 cm-1.  The wings of the CO2 bands are less attenuated and produce peaks at 

2285 and 2295 cm-1 respectively [99].  No significant emissions from the hot CO (2,1) 

band or hot CO2 bands are observed at the modest temperatures reported below. 

 The presence of hydrocarbon (HC) emission was identified between 2800 to 3200 

cm-1. The sp2 and sp3 orbital for C-H stretching modes occur at 3000 - 3100 cm-1 and 

2850 - 2960 cm-1 respectively.  Another interesting feature is the smooth exponential-like 

baseline that decays from 1800 cm-1 at the instrument limit. Several atmospheric water 

absorption lines are also observed near 1800 cm-1. 

 

Figure 7.  Normalized FTIR spectra for (x,y) = (1.8 mm, 12.6 mm) at 24 s. 
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Spectral fitting 

 A simplified line-by-line radiative transfer model (LBLRTM) [26] was developed 

to extract temperature and column densities from the observed plume spectra.  By 

assuming that the plume is in local thermodynamic equilibrium (LTE), and ignoring 

scattering, background radiation, and self-emission of the atmosphere, the apparent 

radiance, L, at a single pixel can be expressed as 

 L(ν ) = τ atm (ν ')ε(ν ')B(ν ',T )ILS(ν −ν ')dν∫ '     (18) 

where τatm is the atmospheric transmittance along the 3.12 m path between the instrument 

and plume, ε represents the plume’s spectral emissivity, B is Planck’s distribution for 

blackbody radiation at temperature T, and ILS is the instrument spectral lineshape.  The 

instrument line shape (ILS) function is controlled by the interferogram length and 

symmetry as well any apodization [100].  For our model no apodization function was 

applied, and the line shape is the canonical FTS function ILS(ν) = 2a Sinc(2πaν), where a 

= 0.3 cm is the instrument maximum optical path difference (MOPD).  Equation 19 

assumes a single layer model and the plume path length is taken approximately as the 

beam diameter where l = 2.43 cm and N is the total gas density. 

 The spectral emissivity is defined as 

ε(ν ) = 1− exp − qiNσ i (ν ,T )
i
∑⎛

⎝⎜
⎞
⎠⎟
τ pτ emp       (19) 

where qi represents the fractional column density as qi = ξi l, ξi is the ith species volume 

mixing fraction, and l is the path length through the plume.  The absorption cross-section 
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σi for the ith molecule is computed using the HITEMP [101] extension to the HITRAN 

[102] spectral database and includes the temperature dependent partition function.  Two 

models for particulate (soot) transmittance, τp, are used: (1) emissivity is independent of 

frequency (greybody) and (2) the logarithmic polynomial in wavelength dependence of 

reference 103.  The last term in Equation 20, τemp = exp (-A) where A is defined as the 

product of a Gaussian function with linear baseline: 

                 

 
A(ν ) = exp − (ν − c2 )

2

c3
⎡
⎣⎢

⎤
⎦⎥
i c1 + c4ν( )      (20) 

was included as an optional parameter to improve fitting in the region of the CO band.  

By including a small rise in the baseline near c2 = 2100 cm-1, a small fit residual 

associated with a difference in the intensities of the P- and R- branches of the CO band 

can be avoided. The identity and impact of this empirical emissivity term on the fit 

column densities and temperature is discussed below. 

 Figure 8a illustrates the calibrated radiance for the 2000 - 2400 cm-1 region where 

the CO and CO2 features are clearly evident.  Best estimates for the column density, 

plume temperature, and particulate emissivity were obtained from a nonlinear fit of 

Equation 18 to the spectrum using a Levenberg-Marquardt algorithm. We allow T, ξi, the 

baseline parameters c1-c4, τp, and the atmospheric CO2 absorption ξ to be real positive 

free fit parameters.  Systematic errors associated with the radiative transfer model were 

evaluated by examining the dependence of the fit parameters and quality of the fit on: (1) 

the empirical emissivity τemp, and (2) the soot emissivity model. 
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Figure 8.  (a) Data, model, fit residual, and imaginary component of the spectrum at t = 

24 s for (x,y) = (1.8 mm, 12.6 mm) in the spectral region between 2000 - 2400 cm-1.  Fit 

results were T =1019 ± 7 K, qCO = 1.14 ± 0.05 x 1018 CO molec/cm2 and qCO2 = 1.11 ± 

0.03 x 1018 CO2 molec/cm2.  (b) Atmospheric transmittance profile for 3.12 m path 

between the plume and the instrument with atmospheric CO2 concentration of 369 ppm. 

(c) Empirical emissivity to possibly account for -C ≡ C- stretch.  

 

 Figure 8a shows the data and fit at 24 s after the beginning of laser irradiation for 

a pixel near the center of the laser spot and 2 pixels (1.8 mm) from the surface.  The 
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radiative transfer model included the empirical emissivity, τemp, and the grey body soot 

emissivity.  The best fit yields an effective temperature of T =1019 ± 7 K, and effective 

column densities of qCO = 1.14 ± 0.05 x 1018 molec/cm2 and qCO2 = 1.11 ± 0.03 x 1018 

molec/cm2.  The reported statistical uncertainties for all the results are defined as the half-

width of the 95% confidence interval and do not include systematic errors associated with 

the assumption of a homogeneous plume or the effects of turbulence.  The particulate 

transmittance τp is ~ 1, consistent with a small soot volume mixing fraction.  The 

transmittance profile for the atmospheric path length of 3.12 m is shown in Figure 8b.  

Atmospheric CO2 absorption is seen from 2300 to 2400 cm-1 with a mixing fraction of 

480 ppm.  

 The residuals are a small fraction of the observed radiance with a root mean square 

error (RMSE) of less than 0.198 µW/(cm2 sr cm-1).  The imaginary component of the 

FTIR provides an estimate of the noise level of the instrument.  The RMSE for the 

imaginary component is 0.240 µW/(cm2 sr cm-1), somewhat greater than the fit error.   

 The high quality fit requires a small contribution from the empirical Gaussian of 

Equation 20 with peak emissivity of 0.04, as seen in Figure 8c.  Without this empirical 

modification, the fit RMSE is 1.35 greater than with the empirical emissivity, the fit 

temperatures are reduced by 67 K, and the column densities of CO2 and CO are increased 

by a factor of 1.4 and 2.3, respectively.  The affect of the empirical emissivity is greater 

for pixels downstream of the irradiated spot.  At (x,y) = (2.7 mm, 17.1 mm) where the 

change in fit temperature excluding the empirical emissivity is – 128 K, and column 

densities of CO2 and CO are increased by a factor of 2.0 and 2.9, respectively.  
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 We tentatively attribute this additional intensity near 2100 cm-1 to emission from 

triple carbon bond, hydrocarbon emission. The presence of -C ≡ C- stretching has been 

reported for RC≡CH between 2080 - 2140 cm-1, RC≡CR between 2080 - 2140 cm-1, and 

RC≡C-C RC≡CR’ between 2200 - 2270 cm-1 and 2080 to 2140 cm-1 [104]. These spectral 

features are not included in the HITRAN database and appear to be the most likely 

contribution to the minor CO P- branch asymmetry.  For example, the spectrum for 1-

octyne at room temperature is shown in Figure 9a [105].  Also shown is the fit empirical 

emissivity of Equation (20).  The spectral location of the empirical feature corresponds 

with the hydrocarbon feature.  The width of the empirical emissivity at T = 444 K is 1.27 

times greater than the reference spectrum at room temperature, as might be expected from 

population of higher rotation levels at the elevated temperatures in the present work.  The 

width of the empirical emissivity at T = 848 K increases to 2.44 times the reference 

spectrum width.  Furthermore, the amplitude of the empirical emissivity systematically 

trends with gas temperature as shown in Figure 9b.    At gas temperatures up to 900 K, 

the emission is steady, and then decreases by a factor of ~ 4, with little impact on the 

radiative transfer model. 
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Figure 9.  (a) Comparison of (o) -C≡C- spectra from 1-octyne at room temperature (RT) 

[105] with (---) empirical emissivity of equation (3) for the pixel (x,y) = (1.88 mm, 12.6 

mm) at  24 s, with temperature T= 898 K, and (b) peak amplitude of empirical emissivity, 

A(ν=c2), as effective plume temperature increases. 
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 The observed emissivity may also be driven by the multi-layer nature of the plumes 

and errors in extrapolating the HITRAN [102] and HITEMP [101] database to high 

temperature.  HITEMP underestimates the band wings of the 4.3 µm fundamental 

asymmetric CO2 band at temperatures above 2000 K [101, 102, 106-108].  However, 

significantly lower temperatures were observed in the present work. The imaginary 

component of the Fourier transform seems to mirror some of the CO2 spectral features 

from 2250 to 2400 cm-1, indicative of scene change artifacts attributable to the dynamic 

nature of the plume. Their small magnitude indicates that the real part of the spectrum is 

likely unaffected by these artifacts [12, 109].  Further analysis of the empirical emissivity 

is outside the scope of the current results, and a detailed examination will be subject to 

future work. 

 The sensitivity of the fit parameters to soot model is rather weak.  The emission 

intensity at 2400 – 2500 cm-1 is low and largely due to soot.  With a soot volume fraction 

constrained at 0.2 %, the modeled intensity in this spectral region is more than four times 

larger than observed.  Even at this high soot fraction, the choice of soot model influences 

temperature extraction by less than 7 K and column densities by less than 5%. 

 In summary, we prefer the radiative transfer model with the empirical emissivity 

representing hydrocarbon emission and gray body soot emissivity for simplicity.  The 

spatial and temporal descriptions of the plume developed below are based on this version 

of the model.  The effective temperatures represent a nonlinear weighting along the IFTS 

line of site. 
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Spatial Maps of Temperature and Concentrations 

 Spatial maps of the fit temperature from LBLRTM, are compared with the 

brightness temperature (Tb) at ν = 2295 cm-1 in Figure 10.  Figure 10a shows the plume 

temperature from the LBLRTM calculation.  Temperature is highest at the edge of the 

surface (T > 1100 K).  The temperature declines as the plume expands away from the 

surface and hot gases rise, driven by buoyancy and fume hood flow rate.  The laser spot 

is centered at y = 12.6 mm and extends from y = 2.7 - 24.3 mm.  The statistical fit 

uncertainty in temperatures are small ΔT < 35 K, and on average ΔT = 7 K in the region 

where the temperature exceeds 900 K.  The brightness temperature is defined by: 

Tb = c2
ν

ln c1ν
3

L(ν )+1
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (21) 

where c1 and c2 are the first and second radiation constants, respectively, L( ) the 

apparent radiance or calibrated spectra and ν is the corresponding wavenumber.  The 

spatial map for Tb, corresponding to the hot CO2 peak at 2295 cm-1 is shown in Figure 

10b.  The brightness temperature is influenced by both the plume temperature and 

effluents concentration.  The fit temperature is ~ 50 % greater than the brightness 

temperature, Tb, consistent with an emissivity for the hot CO2 peak of ε ≅ 0.2. 

 

 ν
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Figure 10.  Spatial maps of the: (a) Fit plume temperature, T obtained from the LBLRTM 

calculation at t = 24 s, (b) Brightness temperature that correspond to a hot CO2 peak at 

2295 cm-1. 

 

The corresponding column densities for CO and CO2 are provided in Figure 11.  

At the center of the plume the fit uncertainties are small, typically < 4 %.  The spatial 

maps for temperature and column densities are temporally resolved at 0.406 s per frame.  
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The pre-combustion densities are significant, ~ 1018 molec/cm2 and comparable to those 

observed in laminar flames with good combustion efficiency [18].  Note that the 

maximum column densities are observed at 2 mm away from the surface where the 

temperature has decreased by about 90 K.  At t = 24 s the CO/CO2 ratio ~ 1:1 and fairly 

uniform spatially. The molecular species travel upward driven by buoyancy and fume 

hood flow, with the maximum extent of the plume perpendicular from the surface of 

about 5 mm.  The hotter region of the plume extends in the vertical direction to y ≅ 25 

mm, x ≅ 3 mm above the laser irradiated region. 

 

Figure 11.  (a) Spatial maps of column density of CO, and (b) CO2 (middle panel) in units 

of (1018 molec/cm2).  (c) Corresponding map of the  [CO]/[CO2] column density ratio. 
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 To partially illustrate the evolving plume, the temporal dependence of 

temperature and column densities for a single pixel is explored in Figure 12.  The 

temperature slowly rises from ambient conditions to steady value of ~ 1140 K in about 

30s.   Sustained combustion occurs at 49s for the unpainted fiberglass samples and the 

temperature rises by ~ 30%.  Painted fiberglass composite targets were studied previously 

and self-ignite earlier (t = 45s) than the unpainted fiberglass targets (t = 49s) [32].  The 

dynamic range of the IFTS instrument is limited by the DC component and modulation 

depth, so both pre-combustion and post combustion images cannot be obtained with the 

same instrument settings.  The pre-combustion data correspond to the pixel (x,y) = 

(1.8mm, 12.6mm) and the combustion plots are for (x,y) = (6.3mm, 12.6mm).  The edge 

of a combustion flame reacts continuously with the atmosphere and exhibits the highest 

turbulence.  Therefore temperature fluctuations will be more evident at the edge than at 

the center of the combustion plume. 

 Combustion ignition temperatures depend significantly on both fiberglass 

composition and heating rates [24]. This previous study has shown that melamine 

fiberglass readily combusts at surface temperatures of ~ 620 K.  Epoxy and silicone 

fiberglass are more resistant, requiring surface temperatures of ~ 1030 K and ~ 1170 K, 

respectively.  However, the epoxy fiberglass combustion temperature is significantly 

reduced to ~ 830 K for radiant heat fluxes of 30 W/cm2 [24].  For our current epoxy 

fiberglass samples, with laser irradiation of 45 W/cm2, the gas temperature rises for an 

extended period to a steady value of ~ 1140 K and when combusting the plume 

temperature reaches 1300 K.  However, the surface temperatures are lower.     
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Figure 12.  (a) Temporal evolution of plume and surface temperature and (b) temporal 

CO, CO2 column densities for t  ≥ 15 s.  The pre-combustion data is for (x,y) = (1.8 mm, 

12.6 mm) and the combustion data is reported for (x,y) = (6.3 mm, 12.6 mm). 
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 Surface temperatures are determined to within ± 6 K from a Planckian fit of the 

blackbody emission at the edge of the fiberglass sample. The surface temperature rises to 

~ 700 K at t = 31 s, about ~ 65% of the plume temperature.  Due to the instrument 

dynamic range limit, surface temperatures for t > 31 s are extrapolated from the 

correlation (r2=0.98) between the gas plume and surface temperatures.  The resulting 

FRP surface temperature at combustion is ~ 856 K, comparable with reported epoxy 

fiberglass combustion temperature of 830 K at a 67% lower irradiance [24]. 

 Induction times for FRP combustion can be quite long, particularly for lower heat 

fluxes.  Heat fluxes of 1 - 4 W/cm2 applied to polypropylene fiberglass induce 

combustion with delays of 100 - 1000 s [110].  For modest flow rates, ~ 1 m/s, ignition 

delay times are controlled by the pyrolysis rate and occur when a minimum concentration 

of hydrocarbon is attained in the gas phase.  

 Carbon monoxide and hydrocarbon concentrations are often highly correlated and 

corrections to combustion efficiency based on these correlations have been developed 

[111].  There is a strong correlation between carbon monoxide and HC concentrations in 

the present study as shown in Figure 13, where the fit CO column density and the 

spectrally integrated intensity for the C-H stretching feature are compared. The database 

for radiative transfer modeling of complex hydrocarbon spectra is rather limited and 

insufficient for our spectral fitting.  An increase in the HC thermal decomposition in the 

gas phase occurs between 15 - 19 s.  The initial production of CO is delayed from the HC 

evolution by a few seconds. Hydrocarbon emission peaks at t = 20s, where a temperature 

rise of ~ 520 K and 792 K occurs in the surface and gas plume, respectively.  At 
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temperatures between T = 520 - 770 K, emission of organic fuels and aromatic 

compounds occurs and the duration of this phase is determined by the amount of 

available fuel in the material [111]. 

 

 

Figure 13.  Temporal correlation between the pre-combustion concentrations for: () 

CO, ( O) HC, and () –C≡C- at (x,y) = (1.8 mm, 12.6 mm). 

 

The spatial and temporal dependence of the evolved gas phase products are rather 

complex and the current qualitative observations are not well organized by established 

kinetic mechanisms. Initially the CO2 concentration is much higher than the CO and 

hydrocarbon emissions, suggesting a pyrolysis rather than standard combustion 

mechanism.  As the surface temperature rises above 700 C, the out-gassing of 

hydrocarbons and CO production rates significantly increases, but the CO2 production 

20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Time (s)

No
rm

ali
ze

d 
da

ta
 (a

.u
.) [HC]

[CO]
[3C]



 

 49 

still exceeds the carbon monoxide.   As the surface temperature begins to stabilize, the 

hydrocarbon and CO production declines, possibly due to depletion of volatile organics 

in the sample.  Despite the surface temperature stabilization and the decline in gas phase 

fuel, combustion is delayed for another 10-20s.  For all but the earliest portion of the 

plume evolution, the combustion efficiency, estimated by the ratio of CO2 to CO + CO2 

concentrations is low, < 50%, consistent with the smokey, pre-combustion nature of the 

plume.   Upon ignition, the CO concentration is greatly reduced and the combustion 

efficiency exceeds 98%, as expected.  The spatial dependence of the emission is 

inconsistent with heterogeneous, surface oxidation to produce CO, followed by gas phase 

oxidation to produce CO2. Prior to combustion, both CO and CO2 emissions peak at ~2 

mm from the surface and the ratio is relatively uniform spatially.  The weak spatial 

variation suggests the CO/CO2 ratio increases farther from the surface.  

 The current results appear qualitatively consistent with the prior fire hazard study 

[24]. The combustion efficiency for fiberglass can be low, < 50 %, even for sustained 

flames.  For epoxy fiberglass, CO2 concentrations are initially somewhat larger than CO, 

but the ratio quickly reverses and CO can exceed CO2 by more than 30 % at peak 

combustion [24].  Kinsella et al. [24] report the evolution of hydrocarbons (i.e. C6H6, 

CH2O and C2H2) occurs first, then CO and CH4 (for silicone FRP).  While these two 

studies appear qualitatively similar, a unified set of kinetic mechanisms remains elusive. 

In short, the mechanisms controlling the gas plume from these laser irradiated surfaces 

are unclear and require further analysis. 
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Conclusions 

 A first quantitative analysis of emissive plumes from laser irradiated fiberglass 

composite surfaces was developed from fast framing hyperspectral observations.    Based 

on the characteristic FTIR spectra of effluents in the plume, we readily identified H2O, 

CO, CO2, and hydrocarbon species as combustion products of FRP.  Moreover, the 

development of a simplified radiative transfer model illustrates time dependent, spatial 

maps of temperature and column densities.  The use of a single-layer plume model to 

retrieve species column densities proved to be an adequate approximation.  However, a 

small structured residual on the red side of the CO2 emission requires further 

interpretation.  The temporal evolution of temperature and column density demonstrated 

the feasibility of using IFTS to study the kinetics interplay between CO and CO2 spatially 

throughout laser irradiation.  A detailed evaluation of pyrolysis kinetics is complicated 

due to the chemical structure of the epoxy fiberglass composite.  However, our 

observations were validated with prior FTIR fiberglass study [24] where initial larger 

concentrations CO2 are somewhat larger than CO.   We intend to explore the gas phase 

combustion for porous graphite targets where well-established kinetic models exist to 

enable detailed kinetic and fluid dynamic modeling. 
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IV.  Thermal Degradation of Poly(methyl methacrylate) with a 1.06 µm Nd:YAG 

Laser in a Buoyant Flow 

Preface  

 The laser radiative oxidative decomposition of PMMA and the evolved 

decomposition products in the gas-phase are investigated from Fourier transform infrared 

(FTIR) spectroscopy.  The spatial and temporal evolution of the gas plume from laser 

irradiated poly(methyl methacrylate) (PMMA) in air were investigated primarily from 

imaging-FTIR with adequate spatial (0.81 mm2 per pixel) and spectral resolutions (2 cm-

1).   Bulk surfaces of black PMMA samples were irradiated from 4 - 22 W/cm2 with a 

1.064 µm Nd:YAG laser.  Strong spectral emission of methyl methacrylate (MMA) was 

observed in the infrared.   Spatial maps of plume temperature and MMA column density 

were obtained from modeling the observed spectra by assuming a homogeneous single-

plume radiative transfer model (RTM).  The spectral model was used to compute the gas 

emissivity from experimentally measured, interpolated and extrapolated MMA 

absorption coefficient database.  The spectral radiance from the irradiated PMMA surface 

at 22 W/cm2 was fitted with Planck’s distribution to obtain temporal and spatial surface 

temperature profiles.  The flat beam laser profile is shown along a row of pixels from the 

spatial surface temperature map.  Laser irradiated PMMA reached a steady surface 

temperature of 613.9 ± 0.8 K and an effective gas-phase temperature of 700 ± 19 K at 22 

W/cm2, obtained from the RTM.  The reported statistical uncertainties for all the results 

are defined as the half-width of the 95% confidence interval and do not include 

systematic errors associated with the assumption of a homogeneous plume or the effects 
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of turbulence.  At the surface-boundary layer, plume temperature was higher at the lower 

irradiance of 4 W/cm2.  As power density increased, gas temperature decreased at the 

surface-boundary layer.  The peak signal-to-noise exceeded 50:1, allowing plume 

temperature and MMA column density determinations with low statistical errors.  A 

simplified thermal analysis was developed to understand the wavelength dependent 

surface heating rates from using both CO2 and Nd:YAG lasers.  The surface gas-phase 

boundary layer kinetics of laser-irradiated PMMA at 22 W/cm2 was investigated.  An 

Arrhenius plot of MMA formation at the surface for a single pixel was compared against 

established kinetics models.  At surface temperatures of 450 to 600 K, an effective 

activation energy of 30.83 ± 8.29 kJ/mol was obtained.  This effective activation energy 

is rather consistent with surface desorption of the monomer.  Therefore at the 22 W/cm2 

irradiance, vaporization and desorption kinetics described the rate of production of MMA 

from the laser irradiated PMMA surface. 

Introduction 

Poly(methyl methacrylate) (PMMA) is an inexpensive thermoplastic that 

decomposes at ~ 493 K [64].  In the presence of oxygen, the main decomposition product 

is the monomer methyl methacrylate (MMA) [65].  Molecular oxygen exerts a stabilizing 

effect on PMMA against depolymerization at low temperatures [66-68], thus increasing 

the initial decomposition temperature when compared to that for thermal degradation in 

an inert gas.  Methyl methacrylate further decomposes to combustible gaseous 

hydrocarbon species.  These hydrocarbon fuels react with oxygen leading to produce CO, 
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CO2 and H2O from combustion.  The thermal decomposition of PMMA is a zero or first-

order kinetics process and has been reviewed in detail elsewhere [69].  

Fourier transform infrared (FTIR) spectroscopy has been used to investigate the 

time dependent thermal degradation of polymers [112]. Recently, imaging Fourier 

transform spectroscopy (IFTS) demonstrated the ability to monitor the thermal 

decomposition products from laser irradiated fiberglass reinforced polymers at high 

spatial resolutions (0.81 mm2 per pixel) [25].  The use of IFTS at short focal distances 

allows evaluating temporal and spatial variations of the evolved molecular species in the 

gas phase, the imagery allows correlating the fluid dynamics to the thermal degradation 

kinetics of polymers.  Since PMMA predominantly depropagates to its monomer as a 

result of thermal degradation, it is important to monitor the infrared emission of MMA 

with high fidelity.  The principal infrared bands of gaseous MMA have been reported 

previously and are summarized in Table 4 [113].  

Table 4.  Principal infrared bands of MMA [113] 

Wavenumber (frequency) Characteristic bands 

820 cm-1 (12.2 µm) C-H and C-O-C deformation 
950 cm-1 (10.5 µm) 
1035 cm-1 (9.7 µm) 

 
=CH (out of plane bending) 

1170 cm-1 (8.5 µm) C-O stretching 
1310 cm-1 (7.6 µm) 
1440 cm-1 (6.9 µm) 

 
CH3- bending 

1730 cm-1 (5.8 µm) C=O stretching 
2940 cm-1 (3.4 µm) CH3- stretching 

 

Radiative transfer models allow accurate quantification of temperature and 

column densities from the observed plume spectra with low statistical errors [25, 114].  
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For fiberglass reinforced polymers, a simple spectral model describing the apparent 

plume radiance was developed to quantitatively interpret a pixel’s spectrum in terms of 

the temperature and column densities of the emissive plume molecular species [25].  

Radiative modeling requires a priori knowledge of the absorption cross section of the 

emitted products for accurate spectral quantification.  Although the HITRAN [102] 

spectral database contains a comprehensive collection of spectroscopic parameters to 

compute the absorption cross-section for several molecules, complex hydrocarbon 

molecular species are not currently included.  The oxidative thermal degradation of 

polymers usually results in complex kinetics with emission from molecular species not 

readily available in the current spectral databases.  Park et al. [113] investigated the 

infrared radiation properties of MMA from statistical narrow band models to fit the 

measured FTIR spectra. The monomer column density can also be estimated from total 

band emissivity calculations from Park et al. [113] as well from radiative transfer models.  

In the present work these two methods are not compared for systematic errors on their 

quantitative estimations.  

Laser lethality experiments with PMMA have been reported with continuous 

wave (CW) CO2 lasers at the longer wavelength of 10.6 µm [51-56].  However, few 

studies have been conducted at the near-infrared wavelength of 1.06 µm [57-59].  This is 

primarily due to the poor absorption characteristics of organic materials in this region.  

Consequently, pigments are commonly added to acrylic thermoplastics to increase 

absorption in the near-IR.  When polymers are irradiated in the longer infrared 

wavelength, the incident energy is mostly absorbed within a few micrometers from the 
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surface.  According to Said-Galiev and Nikitin [61], this in-depth absorption follows the 

Beer-Lambert law as defined by Equation (1), where, I(z) is the irradiance (W/cm2) at 

depth z (cm), I0 is the incident irradiance (W/cm2), and α is the absorptivity (cm-1) of the 

material.  Typically, polymers have low thermal conductivity, which means that the 

effects related to ablation are surface effects.  Therefore the kinetics and mechanism of 

laser irradiation vary depending on the chemical structure and thermophysical properties 

of the material.  The absorptivity of clear PMMA varies depending on the type of laser 

wavelength used, a value of 250 cm-1 was obtained with a CO2 laser (10.6 µm), whereas 

values of ~ 25 cm-1 were assumed for hydrogen fluoride (HF) and deuterium fluoride 

(DF) chemical lasers with wavelengths of 2.7 µm and 3.8 µm respectively [62].  When 

thermoplastic polymers were irradiated with a CO2 laser, Cozzens and Fox [63] reported 

that no breakdown ocurred between 3-7 W/cm2, but at 5-11 W/cm2 softening occurred.  

At a higher irradiance of ~ 22-25 W/cm2, the material decomposed and vaporized.  Since 

the thermal degradation of PMMA with a CW 1.06 µm Nd:YAG laser has not been 

thoroughly investigated, this effort aim to explore the spectral emission of the surface-

plume boundary layer from IFTS.  

The objective of the present work was to investigate the thermal degradation of 

black PMMA with a Nd:YAG laser at radiative fluxes between 4 to 22 W/cm2.  The 

evolved gas phase plume was monitored through FTIR measurements.  Following 

spectral identification of emissive plumes in the infrared, a simplified single layer 

LBLRTM was developed for quantification of spatial and temporal variations in plume 

temperature and molecular column densities from IFTS.  Also, non-imaging long wave 
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infrared (LWIR) FTIR was employed to investigate the temporal evolution of effluents in 

the gas phase.  The influence of radiative flux was investigated to understand the laser 

effects on the thermal degradation of PMMA.  The effect of plume bending due to 

buoyancy is correlated between the infrared imagery and spatial maps of temperature and 

column density as a function of power density.  To our knowledge, we present the first 

two-dimensional spatial maps on the evolved plume temperature and MMA concentration 

profiles from the surface-boundary layer of laser irradiated PMMA.  A kinetics 

interpretation from established models was made based on the statistical results from the 

spectral fit of the irradiated surface at 22 W/cm2. 

Experimental Methods 

Black plexiglass®, PMMA with carbon black pigmentation samples, were 

irradiated by a cw Nd:YAG 1.06 µm laser at 4 – 22 W/cm2 in air at atmospheric pressure 

for 70 – 420s.  The nearly flat top beam with 2.42 cm diameter nearly filled the 6.45 cm2 

square and 1.27 cm thick samples.  Approximate values for various properties of black 

PMMA are provided in Table 5.  The absorption coefficient or absorptivity of a material 

is wavelength dependent.  At 10.6 µm (CO2 laser radiation), the absorptivity of black 

PMMA is ~ 100 cm-1 [56].  However at 1.06 µm (Nd:YAG laser radiation) it has been 

reported between ~ 0.25 to 4.5 cm-1, depending on the amount of carbon-black 

pigmentation in PMMA, from 0.01 to 1 % by weight respectively  [57, 58].  
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Table 5.  Thermo-physical properties of black PMMA 

Name Symbol Value Units Reference 
Density ρPMMA 1190 kg/m3 [115] 
Surface conductivity k 0.188  W/(m K) [115] 
Heat capacity cp  1465 J/(kg K)  [115] 

α(10.6 µm) 100 cm-1 [56] Absorption coefficient 
α(1.06 µm) 0.25 – 4.5 cm-1 [57, 58] 
R(10.6 µm) 5 % [56] Reflectivity 
R(1.06 µm) 50 % [57, 58] 

  

 

 

Figure 14.  Schematic diagram of the experimental set-up for the (a) side-view 

experiments (b) sample rotated at 30° to investigate the surface at 21.7 W/cm2. Non 

imaged FTIR focal distance of 1.42 m is from the instrument to PMMA target. 
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The evolution of the non-combusting, gas plume was monitored with both an 

imaging mid-wave infrared Fourier-transform spectrometer (IFTS), and non-imaging 

high-speed mid- and long-wave Fourier-transform spectrometer (FTS) perpendicular to 

the laser axis.  The majority of the experiments were design to view the gas plume in 

front of the sample surface with the laser incident normal to the surface, as illustrated in 

Figure 14a.  A few experiments were conducted with the sample rotated at 30° so the 

surface temperature could be observed, as shown in Figure 14b.  For these surface 

observations, larger samples of 2.54 cm x 5.08 cm were employed to allow for the same 

illuminated area. 

 The IFTS has been described in some detail previously [4, 5].  The 16-tap InSb 

focal plane array (FPA), with spectral response from 1800 to 6667 cm-1, was narrowed to 

the central 32 x 32 pixels.  With a focal distance of 3.12 m, the spatial resolution is ~ 0.81 

mm2/pixel.  A series of 9480 (number of optical path differences samples) modulated 

images comprise a double-side interferogram on each pixel as the mirror path difference 

is scanned by 0.3 cm (2 cm-1 spectral resolution).  A hyperspectral data cube is acquired 

every 0.3 s.  A neutral density filter of optical density 0.3 was employed to avoid camera 

saturation.  Typical signals at zero optical path difference (OPD) were 15,000 counts, or 

24 % of the camera’s dynamic range.  Two wide area blackbody sources at 363 K and 

473 K were used to calibrate the instrument for absolute units of spectral radiance [116].  

Spectral resolution was degraded to 16 cm-1 for the surface observations, improving the 

temporal resolution to 0.08 s per hyperspectral cube.  
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Non-imaged FTIR spectra were collected using an ABB BOMEM MR-304 

spectrometer at higher spectral resolution of 0.6 cm-1 and enhanced temporal resolution of 

0.09 s/spectrum.  The FTIR is equipped with two single element detectors, InSb with 

spectral response of 1800 – 5000 cm-1, and HgCdTe with response of 600 – 2500 cm-1.  

The field of view (FOV) was 45 mrad which covers a 6.39 cm diameter at the target 

distance of 1.42 m. 

Results and Discussions 

Imagery 

 A visible photograph of a PMMA sample after irradiation at 21.7 W/cm2 for 70 s 

is provided in Figure 15.  The laser beam covers most of the sample, and re-solidification 

of a melt layer can be observed in a small region, 3.36 – 4.12 mm from the sample edge.  

Similar observations of re-solidified of molten material have been reported around the 

edge of irradiated PMMA targets [57, 58].  In the central region of 15 mm, bubbles are 

generated as sub-surface vapor is formed.  The carbon-black pigmentation in PMMA 

allows for absorption of the Nd:YAG beam into some depth of the sample.  The 

absorptivity at 1.06 µm is considerably less, α ≅ 4.5 cm-1, than for the 10.6 µm CO2 laser, 

α ≅ 100 cm-1, depending on the concentration of carbon, see Table 5.  This in-depth 

absorption can lead to subsurface boiling.  The size of the bubbles decreases at longer 

laser wavelength and higher irradiance [62].  From Figure 15, the bubbles are 

approximately less than 0.02 mm in diameter.  The damaged zone on the post-irradiated 

PMMA exhibit well defined sharp edges, confirming that there is a threshold fluence for 

generating bubbles only in the center of the beam [62]. 
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Figure 15.  Picture of post-irradiated PMMA (a) original and (b) with contrast filter. 

  

 Broadband MWIR imagery of the optically thin, smoky plume can be obtained 

from the IFTS by averaging many modulated frames, yielding the DC component of the 

interferogram shown in Figure 16.  For radiative fluxes between 4 – 22 W/cm2, the 

observed infrared emission in our work was for pre-combustion plumes.  At 21.7 W/cm2, 

the intensity and spatial extent of the plume decreased significantly as the irradiation time 

increased from 9 to 57 s.  The production of volatile decomposition products declines as 

surface reactivity degraded, followed by in-depth boiling and bubble formation.  The 

plumes are unstable with significant turbulence, as illustrated in the high framing rate 

images of Figure 17.  Plume turbulence can be investigated by looking at differences in 

intensities between images at two different frames.  Figure 17 illustrates the difference 

between two OPDs of Δt = 0.005 s, the swirling turbulent eddies are evident as oval-like 

regions in the difference image.  Subsequent difference images revealed the temporal 

evolution of these eddies as they break up while traveling down the turbulent plume.  A 

small portion of variation in intensity is due to the change in interference pattern, which 

accompanies a change in the OPD.  The 16-bit FPA saturates at 65,000 counts, with a 0.3 

2.42 cm r

(a) (b)
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optical density neutral density filter, the average signal at center burst is 16,000 counts or 

25 % below saturation limit.  The interferograms appeared noisy as a result of stochastic 

intensity fluctuations caused by turbulence in the plume.  Temporal averaging 

substantially reduced the noise in the interferogram [12, 13]. 

 

 

Figure 16.  Infrared plume imagery of irradiated PMMA at 21.7 W/cm2 at time intervals 

of (a) 9 s (b) 18 s (c) 37 s and (d) 57 s. 
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Figure 17.  Difference between two frames (Δt = 0.005 s) at t ≅ 9 s for 21.7 W/cm2 reveal 

the turbulent eddies and their effect on the DC component of the interferogram.      

 

The plume images for several irradiance levels after 24 s are illustrated in Figures 

18(a-d).  The plexiglass surface is located in the first, left high side column of each 

image.  For I = 17.4 W/cm2 surface outgasing begins at 8 s, but bubble formation does 

not occur until after 31 s.  Minimal vaporization occurs for a delivered fluence of 208 

J/cm2.  At 418 J/cm2, a bright plume extends 10 mm from the surface and lofts to 13 mm 

from the center of the beam.  The plumes are more similar when compared for similar 

delivered fluences (418 J/cm2), as seen in Figures 18(e-f).  However for the lower 

irradiances of 4 – 8 W/cm2, the plume appears weaker at longer irradiation times in 

Figures 18(g-h). 
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Figure 18.  Infrared plume imagery of surface irradiated PMMA at t = 24 s for (a) 17.4 

W/cm2 (b) 13.0 W/cm2 (c) 8.7 W/cm2 and (d) 4.3 W/cm2.  Plume imagery at different 

time intervals of (e) 24 s (17.4 W/cm2 ), (f) 32 s (13.0 W/cm2 ), (g) 131 s (8.7 W/cm2 ) 

and (h) 214 s (4.3 W/cm2 ). 

 

Spectral Features 

The temporally averaged, non-imaged, long- and MWIR spectra of the plume at 

0.6 cm-1 resolution are shown in Fig. 19.  From Fig. 19a, the spectral ringing along most 

of the spectrum occurs as a consequence of the infinite interferogram length, which can 

be attenuated by the apodization function [100].  The observed spectral features are 

characteristic for the emission of MMA [113].   As sumarized in Table 4, we can identify 
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in the LWIR, combination of C-H and C-O-C deformation at 811 cm-1, out of plane 

bending peaks for =CH at 938 and 1015 cm-1, C-O stretching at 1159 and 1202 cm-1, 

CH3- bending peaks at 1308 and 1446 cm-1, a C=C stretching peak at ~ 1632 cm-1, a 

C=O stretching peak at ~ 1737 cm-1, and atmospheric H2O absorption overlapping with 

the C=C and C=O stretching peaks from ~ 1330 to 1800 cm-1.  Similar spectral bands for 

the emission of MMA has been reported elsewhere from thermally decomposed PMMA 

[112, 117, 118].  The LWIR bands are analyzed semi-quantitatively in an effort to 

investigate the presence of other molecular species in the plume.  The small gaseous 

species that are typically associated with the thermal decomposition of monomer MMA 

in air are: methanol, methane, propylene, 2-methyl propylene, acetone, formaldehyde, 

and methyl pyruvate [70].  The molecular structure of PMMA is shown in Fig. 20. 

The =CH stretching band between 2800 – 3200 cm-1 is the most dominant spectral 

feature in the MWIR.  Atmospheric H2O and CO2 absorption features are also evident in 

Fig. 19b.  Based on the spectra, MMA was the primary decomposition product for the 

thermally decomposed PMMA at the laser irradiances between 4 to 22 W/cm2.  
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Figure 19.  Non-imaging FTIR time averaged spectra for laser irradiated PMMA at 21.7 

W/cm2 showing the spectral radiance (Lν) of MMA in the (a) LWIR and (b) MWIR. 

 

 

Figure 20.  (a) Molecular structure of PMMA. (b) Structure of the COOCH3 moiety 
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The temporal dependence of the non-imaged FTIR spectra of Figure 19a is 

summarized in Figure 21.  The band integrated radiance, L, is defined by Equation (22).  

The temporal evolution of L for selected infrared bands is shown in Figure 21a.  The C-H 

and C-O-C combination bands at 811 cm-1 and the =CH bands at 938 and 1015 cm-1, 

quickly reached steady values with no spectral variations in the first 12 s.  However the 

band integrated radiance for the C-O stretching at 1159 and 1202 cm-1 have considerable 

upward curvature.  By plotting the other bands as a function of the 811 cm-1 integrated 

radiance in Figure 21b, the C-O stretching at 1159 and 1202 cm-1 seem to have an 

additional kinetic influence as oppose to the other features which are linear.  When 

comparing the fits of exponential and linear models for the C-O stretching band, the 

adjusted R-squared are 0.95 and 0.88 for the exponential and linear functions 

respectively.  Therefore the linear bands reflect the same emitter, whereas a nonlinear 

feature possibly reflects another small hydrocarbon gaseous specie contributing to the 

signal as a result from the decomposition of MMA.   

L = Lν
ν

ν+Δν

∫ (ν )dν       (22) 

Although MMA is the dominant product of thermally decomposed PMMA, 

methyl pyruvate has been reported as a major volatile decomposition product [70, 117].  

At temperatures between 323 to 398 K, Martin et al. [119] reported the presence of 

methyl pyruvate as a product of thermally decomposed PMMA in air.  However the 

concentration of this volatile fuel is very small, typically reported on the order of 0.06 wt 

% [119].  The fundamental infrared bands for methyl pyruvate has been reported 
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elsewhere [120].  The fundamental  C-O stretching (ν12) and OCH3 rocking (ν11) bands 

for the two fundamental isomers of methyl pyruvate overlap with the MMA emission 

bands at ~ 1159 and 1202 cm-1.    

The ν12 and ν11 bands of methyl pyruvate appears as narrower peaks in the 

reported infrared spectra of Wilmshurst and Horwood [120].  It may be possible that a 

small contribution of these two bands when overlapped with the MMA C-O band will 

give rise to a wider spectral band.  In previous experiments with fiberglass polymeric 

materials, it was noticed that the CO ro-vibrational band from the pre-combustion plume 

appeared asymmetric, most likely due to a minor contribution of the -C ≡ C- stretching 

band overlapping with the CO P- branch [25].  Without a spectral infrared database of 

methyl pyruvate to model the data, the observations appear consistent with previous 

reports on methyl pyruvate as a decomposition product from thermally decomposed 

PMMA in air at comparable temperatures [65, 119]. 

The absorption coefficient for the MMA =CH stretch has been experimentally 

measured at 300 – 1000 K at atmospheric pressure [121].  Using the semi-quantitative 

technique developed in reference [122] where the experimental absorption coefficient is 

adjusted with empirical parameters, the database has been extended to 1400 K and 

interpolated in 50 K increments. A sample of this database is provided in Figure 22.  The 

infrared absorption coefficient of MMA, κ was obtained from Prof. Greg Jackson at the 

University of Maryland.  Fundamentally, the absorption coefficient, κ defined by 

Equation (23) is the product of line intensity, S, line shape, g(ν-νo), and the number of 
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absorbing molecules per unit volume and pressure, NL (Loschmidt’s number = 2.447 x 

1019 molec/cm3/kPa at 296 K)  [123]. 

 

 

Figure 21.  (a) Temporal variations of the band integrated radiance, L of selected infrared 

bands in the LWIR. (b) Band integrated radiance, L, of =CH and C-O bands plotted as a 

function of the irradiance for the 811 cm-1 band.   

κ = Sg(ν −ν0 )NL
296
T

⎛
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⎞
⎠⎟             (23) 

The absorption coefficient, κ, is related to the predicated radiance by: 

L(ν ') = εMMA(ν ') ⋅B(ν ',T )∫ ⋅ ILS(ν −ν ')dν '                      (24) 
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ε(ν ) = 1− exp −ξ ⋅κ (ν ,T ) ⋅P ⋅ l( )τ p                   (25) 

where, 

ξ = Volume mixing fraction of MMA 

l = Plume path length (cm) 

P = Pressure (Pa) 

κ = Absorption coefficient of MMA (cm-1 Pa-1) 

τp = Particulate transmittance 

This radiative transfer model assumes a single layer, homogeneous plume in local 

thermodynamic equilibrium.  The apparent spectral radiance, Lν, is defined by Equation 

(24), where ILS, is the instrument line shape, B is the Planck’s distribution for blackbody 

radiation at temperature T, and ε  is the monomer spectral emissivity as defined by 

Equation (25).  The ILS function is determined by the interferogram length, a = 0.3 cm, 

and a Hanning apodization function [100].  From the molar form of the ideal gas law, the 

gas pressure is defined as P = ρ T (R/M), where ρ is the density of MMA (0.94 g/mol), R 

is the universal gas constant, and M is the molar mass of MMA (100.12 g/mol).  The 

plume path length, l was assumed to be homogeneous and taken as the laser beam 

diameter of ~ 2.42 cm.  The particulate transmittance is assumed independent of 

frequency, as described in recent fiberglass study [25]. 
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Figure 22.  Temperature dependent absorption coefficient of MMA, κ, at 300 (–), 500 (--

), 700 (⋅–) and 1000 (⋅⋅) K for the CH3- and =CH2 stretching band in the MWIR [56]. 

 

The spectral radiance near 3.4 µm from the IFTS instrument for a pixel just above 

the surface in the center of the beam is provided in Figure 23.  A fit of Equation (24) 

using the database of Figure 22 and the corresponding residual is also provided.  The 

residuals are a small fraction of the observed radiance with a root mean square error 

(RMSE) of less than 0.2272 µW/(cm2 sr cm-1).  The imaginary component of the FTIR 
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component is 0.1053 µW/(cm2 sr cm-1), somewhat lower than the fit error.  The best 

estimates for the plume temperature and monomer column density from the nonlinear fit 

are 549 ± 1 K, and 2.77 ± 0.08 1016 molec/cm2, respectively.  The reported statistical 

uncertainties for all the results are defined as the half-width of the 95 % confidence 

interval and do not include systematic errors associated with the assumption of a 

homogeneous plume or the effects of turbulence.  Further analysis of the gas plume to 

develop spatial maps and temporal evolution of the temperature and MMA concentration 

is present below (plume dynamics section).  

 

 

Figure 23.  IFTS observed spectral radiance (--), fit (-) and residual (⋅⋅) of the MMA 3.4 

µm band at (x,y) = (0 mm, 11.7 mm).  
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Surface Temperature 

The sample surface temperatures were investigated with the IFTS by rotating the 

sample at 30° angle relative to the incident laser beam as shown in Figure 14b.  The 

spectral emissivity of the plume is low relative to the surface emission.  From the non-

imaging FTIR the monomer =CH emission is 18 % of the surface spectral radiance, as 

seen from Figure 24.  For surface temperature estimation, the spectral region between 

1900 - 2500 cm-1 was investigated to avoid any temperature contribution from the hot gas 

plume.  The surface temperature studies were performed at 16 cm-1 spectral resolution to 

increase the temporal sampling to 855 Hz.  A typical surface spectrum near the center of 

the irradiated spot for I = 21.7 W/cm2, is shown in Figure 25a.  A fit of Equation (24) 

with the emissivity defined by the gray body surface rather than the MMA, is also shown 

in the figure, yielding a surface temperature of 613.9 ± 0.8 K.  The surface emissivity was 

assumed for black PMMA to be 0.96 [115, 124], also note the atmospheric CO2 

concentration required (257 ± 21 ppm). 
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Figure 24.  Non-imaged FTIR surface and plume spectral radiance at t = 51 s for the 

rotated 30° PMMA sample with a Planckian black body distribution at 440 K.  The 

atmospheric CO2 absorption feature appears near 2400 cm-1. 

 

A spatial map of the temperature distribution is provided in Figure 25b.  Each 

pixel views a surface spot of y = 0.9 mm and x = 1.8 mm, due to the angled surface.  
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temperature map reflects the laser beam spot profile with a near flat top beam of diameter 

2.42 cm. 

 

 

Figure 25.  (a) Time averaged (t > 12 s) observed spectral radiance (O) from center pixel 

and spectral model (-), yielding an effective surface temperature of 613.9 ± 0.8 K.  (b) 

Timed averaged spatial surface temperature distribution of irradiated PMMA at 21.7 

W/cm2.  (c) Laser beam profile at y = 10 mm.  
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toward ambient with an initial decay rate of ~ 15 s.  Laser heating balanced primarily by 

conduction suggests temperature dynamics described as: 

cpVρ
dT
dt

= I(1− R)A − k∇TA              (26) 

where the heat capacity, cp, density, ρ, and thermal conductivity, k, is assumed 

independent of temperature.  Material properties are provided in Table 5.  The reflectance 

is assumed to be R = 0.5 [57, 58], and the beam area is A = 4.5 cm2.  By assuming no 

conduction during the initial rapid heating, and an in-depth laser penetration length of l = 

V/A = 1/α = 0.25 cm, the initial temperature rise is calculated to be dT/dt = 28 K/s, only 

slightly higher than observed.  A steady-state temperature rise from room temperature to 

613 K would require a conduction time scale of 16 s, consistent with the observed final 

decay rate.  However, to match this decay with lateral conduction time scale, τl = (ρcp 

l2)/6k, a diffusion distance of l = 2.9 mm, or about 23 % of the sample thickness is 

required.  Lateral diffusion must be augmented by additional losses, possibly from the 

sample holder. 
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Figure 26.  Temporal evolution of surface temperature irradiated with a 1.06 µm 

Nd:YAG laser at 21.7 W/cm2 (), compared against irradiated PMMA surfaces with a 

10.6 µm CO2 laser at 13.7 W/cm2 (⋅-) from  [52] and electrically heated at 4 W/cm2  (--) 

and 1.7 W/cm2 (⋅⋅) from [125]. 
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The surface temperature dynamics are compared with CO2 laser and broadband 

MWIR radiant heating in Figure 26 [52, 125].  The rate of temperature rise at λ = 10.6 

µm (CO2 laser) is about three times greater despite the lower irradiance.  The reflectance 

in the LWIR is less, R ≅ 0.05 and the absorptivity is much higher, α ≅ 100 cm-1 [52, 56].  

The stronger coupling and smaller in-depth heated volume is consistent with the higher 

heating rate.  The prior results for broadband heating in the MWIR exhibit heating rates 

that are slow enough that a steady state condition is not achieved even after 100 s, and the 

initial heating rates are influenced by the conductive losses.  The heating rates are 

influenced by the available oxygen in the gas boundary with lower surface steady state 

temperatures achieved at higher oxygen concentrations.  The presence of higher oxygen 

concentration in the gas phase increases the mass flux.  However, when surface reaction 

increases, the oxygen-mass flux effect is reduced due to the decrease of oxygen supply to 

the surface. 

Plume Dynamics 

  The IFTS MWIR spectrum at each pixel has been analyzed as described in section 

3.2 to obtain spatial maps for the temperature and MMA concentration in Figures 27-28.  

In the center of the plume, the signal-to-noise ratio is greater than 50:1.  When the ratio 

drops to 2:1 at the edge of the plume, the fit results are not reported.   At higher 

irradiances, the plume extends to 19 mm from the surface and the peak temperature is 

about 700 K.  At lower irradiances, the plume size is reduced to 11 mm and peak 

temperatures are slightly higher, about 750 K.  The slight upward curvature of the plume 

is due to buoyancy.  
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Figure 27.  Time averaged spatial maps of gas-phase plume temperature for laser 

radiative fluxes of (a) 21.7 W/cm2, (b) 17.4 W/cm2, (c) 13.0 W/cm2, (d) 8.7 W/cm2 and 

(e) 4.3 W/cm2. 
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Figure 28.  Time averaged spatial maps of MMA concentrations of the boundary-layer 

plume from laser irradiated PMMA at (a) 21.7 W/cm2, (b) 17.4 W/cm2, (c) 13.0 W/cm2, 

(d) 8.7 W/cm2 and (e) 4.3 W/cm2.  
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PMMA surface transfers energy, consequently heating the gas phase plume.  This was 

observed by Kashiwagi [52] from simultaneous surface and plume temperature 

measurements with thermocouples.  Gas temperature was lower than the surface at earlier 

times, rising above the steady surface temperature at later times with ΔT comparable to 

ours. With rising surface temperature, the rate of decomposition increases thus releasing 

more gaseous products into the boundary-layer.  As the plume becomes thicker, 

absorption of laser radiation in the gas-phase causes the plume temperature to increase 

above the surface steady temperature.  Previous experiments with fiberglass reinforced 

polymers showed similar trend, with steady gas-phase temperature being 1.6 times higher 

than equilibrium surface temperature prior to combustion [25].  Temperature fluctuations 

of ± 50 K arise from scene turbulence and interpolation of the MMA cross-section 

database.  The MMA =CH emission band was first detected at 4 s when the surface 

temperature reached ~ 468 K.  This surface temperature is in reasonable agreement with 

the reported temperature of polymer decomposition at ~ 493 K [64]. 

The MMA spatial concentration in Figure 28 is reported in mole fraction.  The 

MMA concentration peaks at the surface for all irradiances and the extent of the plume is 

correlated with the temperature plots in Figure 27.  However, the MMA concentration 

decays away from the surface faster than the temperature.  Mutoh et al. [53] reported 

similar observations prior to combustion for CO2 laser irradiated PMMA at 45 W/cm2. 
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Figure 29.  Temporal evolution of plume temperature at (x,y) = (0.9mm, 12.6 mm) and 

surface temperature at 21.7 W/cm2. 

Kinetics 
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where g is the acceleration due to gravity and D is the laser beam diameter.  As irradiance 

decreases the decay rates increases.  At 21.7 W/cm2, the decay rate is 21 s-1, and at 17.4 

W/cm2 a 5 % increase occurs.  For the lower irradiances from 13.0 to 4.3 W/cm2, the rate 

increases, with values ranging from 40 – 55 s-1, respectively.  The spatially averaged 

MMA concentration at the surface increases by about a factor of two as the irradiance 

increases from 4.3 to 8.7 W/cm2.  This is consistent with an increase in vapor pressure at 

elevated surface temperatures. 

 

Figure 30.  Time averaged MMA concentration along the center plume vector for 

irradiances between 21.7 - 4.3 W/cm2.  Time, t, is defined as the linear pixel dimension 

(distance) per the buoyant gas velocity of Equation (27).   
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Figure 31.  Spatially averaged MMA surface column density (O) and MMA vapor 

pressure () along the surface-boundary layer in the vertical direction (9 mm ≤ y ≤ 16.2 

mm) for irradiances between 4.3 to 21.7 W/cm2. 

 

 The MMA vapor pressure was calculated using Antoine equation as: 
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      (28) 
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shows the calculated MMA vapor pressure using the monomer gas temperature, Tg at the 

surface-boundary layer.  The rate of removal of the surface layer is reduced at lower 

irradiances.  As power density increases from 8.7 to 21.7 W/cm2, the MMA vapor 

pressure decreases due to an increase in surface layer degradation.  A boiling process 

occurs at the PMMA in-depth that traps the vapor gas, thus making the MMA vapor not 

able to readily escape towards the gas phase boundary layer.  At the higher irradiance of 

21.7 W/cm2, the plume intensity becomes weaker (Fig. 16).  However, MMA molecules 

are able to escape more readily from PMMA at the lower irradiances since the rate of 

surface layer removal is minimal.  Monomer MMA has a normal boiling point of 373 K, 

thus giving rise to higher vapor pressure at near-surface temperature.  It appears that at 

lower irradiances, surface temperature matches the boiling temperature, which could 

possibly nucleate very few bubbles at the surface [127].  Brown and Kashiwagi [127] 

decomposed PMMA with an electrical graphite heater in the presence of O2.  Where at 

the lower flux (1.7 W/cm2) concentration of MMA was higher at the surface than at 3 

W/cm2.  Additionally, in a N2 atmosphere, the MMA concentration remained the same 

for both irradiances.  They postulated that gas phase O2 enhances the generation rate of 

MMA, thus resulting in higher concentrations.  Thus, concluding that irradiated surfaces 

at 3 W/cm2 contained considerably less monomer as result of more evaporation from the 

hot surface at higher temperatures by a higher incident flux. 

 

Thermal decomposition of PMMA involves a depolymerization and desorption of 

MMA towards the evolved gas-phase plume.  The mechanism for PMMA surface 
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degradation according to Chaiken et al. [128] occurs in three stages with: (a) monomer 

forming near the surface, (b) diffusion of monomer to the surface, and (c) desorption of 

the monomer from the surface.  Zeroth and first-order kinetics have been considered for 

the thermal decomposition of PMMA, effective activation energies for the desorption of 

MMA have been reported between 29 - 84 kJ/mol [69, 128, 129].  Chaiken et al. [128] 

reported activation energies for: desorption (Eds) of MMA from the polymer, chain 

propagation (Ep), chain depropagation (Ed), and diffusion of monomer (ED) in the 

polymer with respective values of  46, 23, 89 and 145 kJ/mole. 

 Figure 31 is an Arrhenius plot for MMA formation at the surface for a single pixel 

at (x,y) = (0 mm, 12.6 mm).  After the initial surface temperature rise, the production of 

volatile decomposition products declines as surface reactivity is degraded once the 

surface reaches steady surface-temperature.  For thermally decomposed PMMA in air at 

temperatures between 323 - 398 K, Martin et al. [119] observed a leveling off the 

monomer concentration with a rapid decrease, somewhat similar to our results.  The 

authors concluded that the leveling off in MMA concentration begins at the same time as 

the zeroth-order scission rate process becomes dominant.  Assuming that the 

concentration of the burning polymer remains constant at the initial heating rate, a zeroth-

order rate process for the evolution of gaseous MMA is expected to occur at the surface-

boundary layer.  The obtained effective activation energy of 30.83 ± 8.29 kJ/mol is low to 

suggest monomer formation by chain rupture as the rate-controlling mechanism.  The 

results are rather consistent with surface desorption of the monomer.  Therefore, 

vaporization and desorption kinetics describe the rate of production of MMA towards the 
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plume from the bulk surface at the 21.7 W/cm2.  The intercept obtained from the 

Arrhenius plot is A0 = 4.93 x 102 s-1, and is consistent with the reported rate for 

desorption of Ad = 5.8 x 102 s-1 [130]. 

 

 

Figure 32.  Arrhenius type plot of MMA formation for a single pixel at (x,y) = (0 mm, 

12.6 mm) for irradiated PMMA surface at 21.7 W/cm2. 
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using the plume temperature instead of the surface temperature, effective activation 

energies of 288 ± 47 kJ/mol to 390 ± 82 kJ/mol were obtained for individual pixels in the 

center plume from x = 0.9 – 2.7 mm, respectively.  These effective activation energies in 

the plume correspond to degradation initiated by random scission [67, 69].  According to 

Song et al. [65], methyl pyruvate is formed as a result of main chain scission.  The 

temporal dependence of the non-imaged FTIR spectra (Figure 8) suggests formation of 

other small gaseous specie such as methyl pyruvate, due to an exponential growth of the 

 C-O stretching (ν12) and OCH3 rocking (ν11) bands.  Kashiwagi et al. [131] proposed that 

methyl pyruvate can be eliminated by trapped oxygen in the polymer chain, which was 

observed experimentally by Song et al. [65].   

Conclusions 

 The thermal degradation of laser-irradiated black PMMA in air with a 1.06 µm 

Nd:YAG laser was investigated quantitatively using imaging FTIR spectroscopy.  The 

first known two-dimensional spatial maps of temperature and MMA column density were 

developed for gaseous boundary-layer plumes.  Based on the characteristic FTIR spectra 

in the gas phase plume, the primary decomposition product was MMA.  Also, from non-

imaging FTIR we were able to identify stretching bands in the LWIR that are typically 

associated with MMA and methyl pyruvate.  The database for radiative transfer modeling 

of complex hydrocarbon spectra is rather limited and insufficient for our spectral fitting.  

Based on our semi-quantitative observations it is most likely that methyl pyruvate was 

present, since a minor contribution of the ν12 and ν11 bands overlapping with the MMA C-

O stretching peak could make it appear much wider.   
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Moreover, the use of a homogeneous single-plume radiative transfer model to 

extract concentrations and temperature provided an adequate approximation.  Imaging-

FTIR also proved to be an efficient tool for investigating surface temperature 

distributions both temporally and spatially with low statistical errors.  The spatial 

temperature distribution allowed visualization of the laser footprint, which is important 

for laser lethality experiments.  A simplified thermal analysis elucidated the influence of 

10.6 µm and 1.06 µm laser wavelengths on surface heating.  The initial heating rate is 

dominated by absorption of the incident laser radiation, which is followed by a 

conduction-dominated process when surface reaches a steady-state temperature.  The 

simplified analysis allowed to explain Kashiwagi [52] results with a CO2 laser, where he 

was able to reach autoignition temperatures at much lower irradiances.  At the longer 

10.6 µm wavelength non-scattered radiation is absorbed at a few micrometers from the 

surface layer (skin depth).  Gas phase temperature was higher than surface temperature, 

thus indicating that once decomposition begins, heating of the plume is largely due to 

absorption of the incident laser radiation. 

 For the thermal decomposition of PMMA to MMA at the surface, an effective 

activation energy of 30.83 ± 8.29 kJ/mol was obtained for a pixel at surface temperatures 

from 455 K to 600 K.  This low activation energy is rather consistent with surface 

desorption of the monomer.  Therefore at the 21.7 W/cm2 irradiance, vaporization and 

desorption kinetics describe the rate of production of MMA at the surface.  At the gas 

boundary-layer, effective activation energies in the plume correspond to degradation 
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initiated by random scission [67, 69].  It is more likely that a few MMA molecules 

decompose to methyl pyruvate based on the non-imaged FTIR spectra. 

This work demonstrates the ability of IFTS to extract activation energies at 

discrete positions in space, enabling the produce spatial maps of activation energies.  The 

combustion kinetics of PMMA and carbon based materials will be explore in future work 

to validate empirical results with reactive fluid dynamics modeling. 
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V.  Boundary Layer Combustion Kinetics of Laser Irradiated Porous Graphite from 

Imaging Fourier Transform Spectroscopy 

Preface 

 The combustion plumes arising from laser-irradiated graphite targets were 

investigated experimentally from hyperspectral imaging Fourier transform spectroscopy 

(IFTS).  Porous graphite targets were irradiated using a 1.07 µm, 20-kW ytterbium fiber 

laser at irradiances of 0.3 – 4 kW/cm2.  Emissive plumes from the oxidation of graphite in 

air were monitored using a mid-wave infrared imaging Fourier-transform spectrometer 

with spatial resolution of 0.52 mm2 per pixel.   Strong spectral emission of CO and CO2 

were observed in the infrared between 1900 – 2400 cm-1 with an instrument spectral 

resolution of 2 cm-1.  A homogeneous single-layer plume line-by-line radiative transfer 

model (LBLRTM) and two band models (EM2C and RADCAL) were developed to 

estimate spatial maps of temperature and column densities of CO and CO2 with a 

temporal resolution of 0.47 s per hyperspectral data cube.  At 0.8 kW/cm2 surface 

temperatures reach 2500 K.  At 0.72 mm from the surface, steady-state values of gas 

temperatures of 2500 – 2900 K and column densities of 4.56 and 5.66 x 1017 molec/cm2 

were obtained for CO and CO2 respectively.  The spectral model was used to compute the 

absorption cross-sections of CO and CO2 using spectral line parameters from HITEMP, 

the high temperature extension of the HITRAN database.  Also, we validated the use of 

statistical narrow-band models (EM2C and RADCAL) with experimental combustion 

data at temperatures as high as 2900 K.  Systematic errors associated with the spectral 

models between LBLRTM, RADCAL and EM2C are discussed.  Temporal variations in 
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plume temperature and column densities were investigated up to 3 mm away from the 

surface into the boundary layer.  At 0.72 mm from the surface, experimental results 

indicated a dominant production of CO2 at surface temperatures from 2157 - 2530 K, thus 

corresponding to the global heterogeneous reaction of CO and CO2 production at the 

surface.  On the basis of CO/CO2 primary product ratio, we obtained effective activation 

energies of 149 to 111 kJ/mol at distances between 0.72 mm to 3 mm away from the 

surface in the gas-phase boundary layer, respectively.  The effective activation energies 

were comparable near the surface (0.72 mm) with the global heterogeneous reaction for 

production of CO and CO2 at the surface, whereas in the boundary layer (2.16 mm) the 

global homogeneous reaction of CO oxidation to CO2 dominates.  Kinetics interplay 

between heterogeneous and homogeneous combustion kinetics are shown from 

experimental observations at high spatial resolutions.  Overall the boundary layer profile 

at steady-state is consistent with CO being mainly produced at the surface-boundary layer 

by heterogeneous reactions followed by a rapid homogeneous combustion in the 

boundary layer towards buoyancy. 

Introduction 

  Novel experimental techniques with high spatial resolution of ≤ 1 mm for laser 

spot sizes of 1 - 10 cm are of growing interest, particularly to investigate the combustion 

plume from laser irradiated materials at high temperatures.  Two-dimensional imaging of 

combustion plumes above laser-irradiated samples would be particularly useful in 

developing profiles for molecular species concentrations and gas temperatures at the 

boundary layer, benchmarking reactive fluid dynamic calculations.  Recently, the use of 
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imaging Fourier transform spectroscopy (IFTS) was established to examine the evolving 

combustion gas plume generated by irradiating composite surfaces with high power 

lasers [25, 132].  Through analysis of the characteristic spectra of emissive plumes in the 

mid-wave infrared (MWIR), the CO and CO2 kinetics can be analyzed both spatially (≤ 1 

mm2 per pixel) and temporally from hyperspectral IFTS.  The combustion mechanism of 

a graphite target will be explored experimentally, where well-established kinetic models 

exist for carbon by comparing empirical observations with global kinetics models. 

  The combustion mechanism of graphite has been extensively investigated in an 

attempt to elucidate the fundamental mechanism of reaction.  Carbon oxidation kinetics 

can be simplified using global reaction mechanism.  At the surface, the heterogeneous 

reaction (29) occurs first [90-93], followed by the homogeneous reaction (30) in the gas 

phase [94-96]. 

 

 

α + β
α 2 + β

C(s ) +O2 →
α

α 2 + β
CO + β

α 2 + β
CO2    (29) 

 CO +1 2O2 →CO2     (30) 

 

 However, there has been a debate about reaction (29) as to whether CO and CO2 

are the primary products of the heterogeneous reaction.  The general consensus has been 

that for temperatures greater than 1200 K, the CO2 production is small [74] but at lower 

temperatures both CO and CO2 are present [75, 76].  Moreover, Mitchell et al. [78] argue 

that at temperatures around 2000 K, it is necessary to consider the formation of CO2 at 
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the surface to accurately account for the heat release rate, and hence, the mass burning 

rate, and surface temperature.  However, Adomeit et al. [79] found that the heterogeneous 

reaction rate corresponded to a predominant production of CO2, rather than CO, contrary 

to the results reported elsewhere [74-76].  The CO/CO2 ratio has been shown to increase 

exponentially with increasing temperature and can be expressed in the Arrhenius form of 

Equation (31) [72, 133].   

 

[CO] [CO2 ]= Aexp(−B /T )    (31) 

 

where, A and Ea are the pre-exponential and effective activation energy obtained from 

experiments. 

  The primary product ratio of CO/CO2 has been measured experimentally by 

many investigators and expressed empirically for the relative rates at which CO and CO2 

are produced with the Arrhenius relation of Equation (31).  According to Arthur [74], the 

CO/CO2 ratio increases with temperature and the effective activation energy, Ea = ECO2-

ECO, where it is estimated from the slope of Equation (31) from the least squares method.  

The resulting effective activation energy, Ea, is for the production of CO and CO2 from 

the heterogeneous reaction at a measured temperature range.  From the empirical 

relationship of Arthur [74] given by [CO]/[CO2] = 2500 exp(-6240/T), [CO] = [CO2] at T 

= 800 K, and at T = 1700 K, CO is 64 times higher than CO2.  Hayhurst and Parmar [73] 

investigated the oxidation of graphite up to 1400 K, where they found that CO was 

formed at the surface and later being converted to CO2 in the gas phase.  Chelliah et al. 
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[88] concluded that there is a strong coupling between the homogeneous and 

heterogeneous kinetics that depends on temperature, flow rate, oxidizer, and pressure.  

Therefore, the overall oxidation of graphite depends on both the heterogeneous and 

homogeneous kinetics rate.  The kinetics interplay between homogeneous and 

heterogeneous reaction can be complicated due to secondary reactions, since CO can be 

oxidized to CO2, and CO2 can be reduced by the carbon surface to CO.  

With laser irradiances as low as 45 W/cm2, a significant combustion plume was 

produced on fiberglass targets in previous experiments [25, 132].  On the contrary, solid 

graphite requires a much higher irradiance of 181 W/cm2 in order for a sizeable 

combustion plume to occur [71].  The evolved combustion plume from laser irradiated 

graphite between 0.2 – 4 kW/cm2 is shown from high-speed infrared and visible imagery 

qualitatively in the plume dynamics section.  The primary focus of this work was to 

investigate quantitatively the combustion mechanism of laser-irradiated graphite at 777 

W/cm2.   The evolution of combustion gases in the plume was monitored from specie 

characteristic ro-vibrational spectra in the MWIR.  Plume temperature and concentrations 

of CO and CO2 are then estimated from various radiative transfer models.  Theses 

spectral models include line-by-line database and narrow band-models.  The estimation 

of front surface temperatures are complicated by the coupling of evolving surface 

emissivity and intervening gas plume emissivity.  By monitoring the gas plume 

perpendicular to the surface, much of the information necessary for separating surface 

temperature from gas emission becomes available.  Effective activation energies of 

porous graphite targets are then determined by Eq. (31) from empirical observations at 
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the boundary layer.  Without detailed fluid dynamics modeling, the experimental results 

are then compared with established graphite combustion kinetics by considering global 

heterogeneous and homogeneous reaction mechanisms. 

Experimental Methods 

 Porous graphite targets from Graphtek LLC, of 7.62 x 7.62 cm and 1.27 or 0.64 

cm thickness were mounted vertically in a flat surface perpendicular to floor and 

irradiated in air by a 20 kW IPG Photonics model YLR-2000 ytterbium fiber laser at 1.07 

µm, as shown in Figure 33.  Pyrolitic graphite and porous samples with particle diameters 

of 0.6 and 0.15 cm were mounted vertically in air at atmospheric pressure.  The sample 

holder was a vise clamp insulated with ceramic between sample and the steel serrated 

jaws, holding the sample at the bottom edge.  Buoyancy and a distant fume hood drive a 

slow vertical (+y direction) flow of ~ 8 m/s.  Gaussian beams with a one sigma radius of 

2.23 cm and irradiances of 0.2 – 4 kW/cm2 were incident on the graphite sample at 

normal incidence for 120 s. 

 The primary optical diagnostic is a MWIR (1800 – 6667 cm-1) imaging Fourier-

transform spectrometer viewing the gas plume evolving from the surface.  The IFTS was 

placed at a focal distance of 47 cm from the center of the plume and observes hot gas 

emission integrated along the line of sight (z-axis) with two-dimensional image away 

from surface horizontally (x-axis) and along the surface vertically (y-axis).  The InSb 

focal plane array (FPA) was narrowed to 200 x 64 pixels with a spatial resolution of 

0.52mm2/pixel.  Interferograms were recorded on each pixel with a spectral resolution of 

2 cm-1.  The Fourier-transform of the interferograms produces full hyperspectral data 
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cubes with a temporal resolution of 0.47 s.  The IFTS is calibrated using two wide area 

blackbodies at 673 and 873 K by dividing the spectrum by the gain and subtracted by the 

offset to convert the spectra in absolute units of radiance (W/cm2 sr cm-1) [116].   A large 

cold blackbody is placed on the far side of the plume to provide uniform background.  

The 16-bit FPA using a 0.3 optical density neutral density (ND) filter saturates with 

65,000 counts at 300 µW/(cm2 sr cm-1), with a background radiance of 6 µW/(cm2 sr cm-

1).  For gas plume temperatures near 1000 K, the DC component of the interferogram 

represents 28 % of the dynamic range, with the interferometer producing an 8 % 

modulation at zero optical path difference (ZPD) [25].  For the typical conditions 

encountered in our work with a 2.0 ND filter, the plume radiance at 2900 K is 1000 

µW/(cm2 sr cm-1) where the ratio of the DC component to center burst is 72 %. 

  A Phantom v7 three-color, CMOS visible camera with 1024 x 1024 pixels 

provides full frame imagery at 350 Hz.  At a distance of 72 cm, the individual pixel field 

of view is 0.14 mm/pixel.  The visible imagery provides information on flow field, 

including ejected particle sizes and velocities.  Surface temperature was monitored with a 

FAR associates SpectroPyrometer with spatial averaging over the central 0.75 cm radius 

of the irradiated spot, or the central 33 % of the Gaussian beam diameter. 
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Figure 33.  Schematic experimental set-up. 

Results 

Plume Dynamics 

 Broadband imagery without spectral resolution from both the mid infrared IFTS 

InSb array and the visible camera provide information about the structure and fluid 

dynamics of the combusting plumes.  An interferogram cube from the IFTS is comprised 

of broadband imagery.  The high-speed broadband infrared imagery (DC+AC) reveals 

plume dynamics such as turbulent motion.  By averaging the temporal interferogram 

cubes for the entire laser on event, the noise associated with scene change artifacts are 

reduced [12, 109].  

 Images of the infrared emissive plumes at several irradiances levels for the coarser 

porosity samples for a single OPD are shown in Figure 34.  A temporal average of 1.2 x 

106 frames over 120 s produce steady images that define the spatial extent and structure 

of the combustion products.  Blackbody emission from the hot 1.27 cm graphite sample 
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located in the bottom right corner of each images was masked to eliminate saturated 

pixels.  The laser beam is centered on the sample at y = 33.12 mm and the Gaussian 

width extends from y = 10.08 – 54.72 mm.  Combustion is weak at I = 251 W/cm2, where 

the surface temperature is Ts = 1800 K and the heterogeneous oxidation is relatively slow.  

As the laser irradiance is increased from 485 W/cm2 to 1 kW/cm2 the surface temperature 

increases from 2200 K to 2900 K.  Under these conditions, the spatial extent of the IR 

plume expands to 4 – 12 mm away from the surface (x-direction) and continues for ~ 4 

cm above the sample.  As the plume expands in the vertical, y-direction it conforms to the 

top edge of the graphite and rises primary due to buoyancy.  The sample is sufficiently 

hot over the full extent to saturate the InSb array and heterogeneous reaction at the top 

edge contributes to the emission above y = 60 mm. 
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Figure 34.  Time averaged infrared combustion plume imagery of laser irradiated porous 

graphite (0.6 cm particle size) at (a) 0.25 kW/cm2, (b) 0.49 kW/cm2, (c) 0.78 kW/cm2, (d) 

1 kW/cm2 and (e) 4 kW/cm2. 

 

  At 4 kW/cm2 the plume changed radically due to a large flux of CO, CO2 and 

carbon particulates emanating from the surface, as seen in Figure 34e.  From optical 

pyrometry measurements, the surface temperature exceeded the carbon sublimation 

temperature of 4000 K [134-136].  The flux from the surface appears comparable or 

larger than the buoyant atmospheric flow and a jet extends to 4 cm from the surface and 

several beam diameters in the vertical direction.  It is likely that surface sublimation of 
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carbon now dominates the plume dynamics.  Indeed, after termination of the laser 

irradiation, a formation of deposited carbon fills an area of 6 mm2 and extends into the 

plume to x = 19 mm, just above the jet at y = 60 mm, as seen from Figure 35.  Structural 

and morphological changes have been reported for laser irradiated graphite samples, 

resulting in visible craters and irregular shapes near the irradiated surface [137].  After 10 

s of irradiation, graphite has been removed from the sample to a depth of 3.18 mm across 

27 % of the beam. 

 

 

Figure 35.  Post-irradiated porous graphite target at 4 kW/cm2 showing structural changes 

with formation of deposited carbon. 

 

Carbon deposit
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 The porosity of the graphite also affected the plume dynamics presumably due to 

the surface area available for oxidation, as shown in Figure 36.  For the coarser graphite, 

0.6 cm particle sizes, the plume is significantly thicker, longer and brighter.  The extent 

of the plume for the pyrolitic graphite is similar to the less coarse material, but the 

intensity of the plume near the surface is significant higher. 

 The MWIR imagery is complemented by the high speed visible imagery sampled 

in Figure 37 and Figure 38.  The plume first becomes evident in Figure 37a after about 16 

s of irradiation at 0.8 kW/cm2.  The surface temperature at this point is 2290 K and the 

intensity in the MWIR is about 44 % of the steady value.  The temporal evolution of the 

visible plume during the next 40 ms is illustrated in Figure 37.  Bright emission is 

observed at the surface along most of the extent of the laser irradiated spot.  A sudden 

expulsion of gaseous and particulate matter occurs near the center of the beam, growing 

in intensity and flowing vertically upward near the surface.  The plume expands to 2.12 

mm from the surface (x-direction) and 18 mm (y-direction) from the center of the sample 

to near top edge in 40 ms.  Several particulates of diameter ~ 0.1 – 1.0 mm can be 

identified in the imagery.  The initial plume velocity is of ~ 50 cm/s, and expands to 2.1 

mm from the surface lasting 0.19 s.  After this jet disappears, a very thin flame evolves 

from the surface and becomes steady at about 26.3 s after the beginning of laser 

irradiation. 
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Figure 36.  Time averaged infrared combustion plume imagery of laser irradiated porous 

graphite at 485 W/cm2 with particle size of (a) 0.6 cm and (b) 0.4 cm.  (c) Pyrolitic 

graphite.  
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Figure 37.  High-speed visible imagery for irradiated graphite at 777 W/cm2 at single 

frames for time of  (a) 16.28 s, (b) 16.29 s, (c) 16.31 s and (d) 16.32 s.  Spatial resolution 

is 0.14 mm/pixel.  

 

A second sudden ejection occurs at about 54 s, as shown in Figure 38.  Both the 

steady, diffuse plume and the trajectory of individual particulates have been monitored in 

the video from which the individual images in Figure 38 were derived.  The sustained 

combustion flame extends 5.6 – 6.5 mm from the surface.  The trajectory of a 1 mm 

particulate is observed detached from the surface by about 2 mm with an estimated 

velocity of 31 cm/s.  Apparently, micro-cracks in the porous graphite occasionally 

develop, ejecting burning particulates into the gas plume.  The intensity and frequency of 

these events is greater at higher irradiance levels.  During the quiescent periods, the 

combustion mechanism may be evaluated by heterogeneous oxidation of the surface to 

produce CO (and maybe some CO2) followed by homogeneous, gas phase conversion of 
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CO to CO2.  During the micro eruptions, reactions at the surface of the ejected 

particulates may dominate. 

 

 

Figure 38.  High-speed visible imagery of steady-state diffuse plume and secondary 

plume of laser irradiated graphite at 777 W/cm2 at (a) 54.48 s, (b) 54.53 s, (c) 54.58 s and 

(d) 55.60 s with a 0.14 mm/pixel spatial resolution.  The ghost image is due to an out-of-

focus image of a bright source in the field-of-view of the camera.    

 

Spectral Analysis 

 A portion of the MWIR spectrum between 1900 - 2500 cm-1, highlighting the CO2 

antisymmetric stretching band and CO fundamental band emission is shown in Figure 

39a.  The spectrum is for a single pixel located 1.4 mm from the surface, near the center 

of the beam at (x,y) = (1.4 mm, 35.3 mm), and averaged temporally from 41 – 120 s.  The 

CO2 emission dominates over the weaker CO emission lying on the red wings of the CO2 
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absorption by the colder CO2 in the atmospheric path to the IFTS instrument.  The signal 

to noise at the peak of the spectrum is 87:1.  The imaginary portion of the Fourier 

transform is not shown, but less than 22 µW /(cm2 sr cm-1) with little spectral structure.   

Also shown in Figure 39b are the spectral basis functions for CO2 and CO at 2995 K.  

The instrument spectral resolution of 2 cm-1 coincides with the CO rotational spacing, 

giving rise to the odd structure for CO rotational lines obtained in Figure 37b from 

convolving the CO monochromatic spectral emissivity with the instrument line shape. 

 

Figure 39.  (a) Time averaged (41 s ≤ t ≤ 120 s) spectral radiance for (x,y) = (1.4 mm, 

35.3 mm). (b) Spectral basis functions from LBLRTM and optional empirical emissivity, 

without atmospheric attenuation. 
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To extract emitter column densities and plume temperature from the observed 

spectra, a line-by-line radiative transfer model (LBLRTM) [26] and two statistical narrow 

band models [30, 31] were employed.  First consider the line-by-line model, a simplified 

single-layer LBLRTM [26] was developed to extract temperature and effluent 

concentrations from emissive plumes.  By ignoring scattering and assuming that the 

plume is in local thermodynamic equilibrium (LTE), the spectral radiance, L, is expressed 

as: 

 
L ν( ) = τ atm ( ν ')ε( ν ')Bp ( ν ',T )ILS( ν − ν ')d ν∫ '     (32) 

where τatm is the atmospheric transmittance along a 47 cm path between the imaging 

spectrometer and the plume, ε represents the plume’s spectral emissivity, Bp is Planck’s 

distribution for blackbody radiation at temperature T, and ILS is the instrument spectral 

lineshape.  The instrument line shape (ILS) function is controlled by the interferogram 

length and symmetry as well any apodization function [100].  For our model no 

apodization function was applied, and the line shape is the canonical FTS function ILS(ν) 

= 2a sinc(2πaν), where a = 0.3 cm is the instrument maximum optical path difference 

(MOPD).  The spectral emissivity is defined by Equation (33) as: 

   
ε( ν ) = 1− exp − lξi Nσ i( ν ,T )

i
∑⎛

⎝⎜
⎞
⎠⎟
τ pτ emp    (33) 

where, ξi is the ith species volume mixing fraction, and l is the path length through the 

plume which is assumed constant and taken approximately as the laser beam diameter of 

4.46 cm.  N is the total gas density defined by the ideal gas law.  The absorption cross-

section σi for the ith molecule is computed using the HITEMP [101] extension to the 
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HITRAN [102] spectral database and includes the temperature dependent partition 

function.  Also, particulate (soot) transmittance, τp, is assumed to be independent of 

frequency (i.e., a gray body).  Other soot models include a logarithmic polynomial that is 

frequency-dependent [103].  In previous fiberglass studies [25], the particulate 

transmittance τp was ~ 1, consistent with a small soot volume mixing fraction.  The 

sensitivity of the fit parameters to the soot model was rather weak.  The emission 

intensity at 2400 – 2500 cm-1 is low and largely due to soot.  With a soot volume fraction 

constrained at 0.2 %, the modeled intensity in this spectral region was more than four 

times larger than observed.  Even at this high soot fraction, the choice of soot model 

influences temperature extraction by less than 7 K and column densities by less than 5% 

[25].  A gray body particulate transmittance is used in our model for simplicity. 

  An optional empirical transmittance, τemp = exp (-A), where A is a Gaussian function 

to improve the quality of the fit at T > 2500 K using LBLRTM.  The Gaussian function is 

defined as: 

 A(ν ) = c1 exp −
(ν − c

2
)2

c3

⎡

⎣
⎢

⎤

⎦
⎥     (34) 

  The evaluation of high gas temperatures (T > 2000 K) remains a challenge for 

radiative transfer modeling, particularly for the 4.3 µm CO2 band where spectral 

databases are rather limited.  The HITEMP databank contains line-by-line parameters for 

a few molecules (H2O, CO2, CO, NO, and OH) that are of particular interest in 

combustion.  The latest version, HITEMP-2010 [101] includes a previous version of the 

carbon dioxide spectroscopic databank (CDSD) [138].  The latest CDSD version, CDSD-
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4000 [108] was designed for the temperature range between 2500 - 5000 K, and was 

developed based on the effective Hamiltonian and effective dipole moment operators.  

The parameters of these operators were adjusted to fit experimentally observed line 

position and intensities [139, 140].  However, there's a lack of extensive experimental 

infrared data for combustion gases at very high temperatures, particularly for the 4.3 µm 

CO2 band.  In the work from Modest and Bharadwaj [107] and Bharadwaj and Modest 

[141], the CDSD and HITEMP databases were validated up to 1550 K against 

experimentally measured CO2 transmissivities for the 4.3 µm band.  At the wings of the 

optically thick 4.3 µm band, HITEMP overestimates the absorption band wing at T > 

1300 K, whereas CDSD is in close agreement, perhaps indicating that HITEMP may 

suffer from incorrectly extrapolated high-temperature lines [142].  Recently, the CO2 

spectral radiance in the infrared was investigated experimentally by Depraz et al. [106, 

142] at very high temperatures of up to 5000 K and compared against currently available 

spectral databases.  It was shown that the theoretical simulations overestimated the 

experimental results, except at the band wing where the CDSD was in close agreement at 

these elevated temperatures. 

  Best estimates for the plume concentrations and temperature are obtained from 

nonlinear fit of Equation (32) to the observed spectra, using a Levenberg-Marquardt 

algorithm.  The average fit residual for Figure 37a is 100 µW /(cm2 sr cm-1) and is 10 % 

larger than the instrument noise.  The best estimate for the effective gas temperature is 

2999 ± 395 K, with column densities of 7.06 ± 0.06 1017 CO2 molec/cm2 and 7.44 ± 0.06 

1017 CO molec/cm2, for Figure 39a.  The statistical error bounds represent the 95 % 
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confidence intervals and do not include systematic error bounds associated with the 

spectral model or non-uniformity of the plume along the instrument line-of-sight.  In 

particular, the quality of the fit in Figure 39a requires the inclusion of the empirical 

emissivity of Equation (34) with a peak emissivity value of c1 = 0.03, centered at c2 = 

2100 cm-1 and of width c3 = 35 cm-1.  This optional empirical emissivity, εemp was 

necessary to improve the quality of the fit at T > 2500 K, where HITEMP underestimates 

the intensity in the band wings, as discussed in detail below [106-108, 141]. 

  To interpret and validate the addition of this empirical emissivity at high 

temperatures, we have selected from the literature [143] an observed spectrum of the 4.3 

µm CO2 band at 2850 K and simulated the experimental high-temperature CO2 spectral 

emissivity.  The simulated spectral emissivities from HITEMP with and without the 

optional empirical emissivity as well a prediction from the CDSD-4000 database are 

shown in Figure 40.  To simulate the experimental data, a triangular apodization function 

was assumed with an interferogram length of 0.15 cm for a qualitatively agreement for 

simulating the observed spectra.  These prior observations [143], were at a pressure of 2 

atm, a temperature of 2850 K, and a path length of 2.34 cm.  The experimental data from 

reference [143], contained a considerably high water concentration (24% CO2, 35% H2O 

and 18% CO) when compared with the current work.   

  The CO2 absorption cross sections in HITEMP-2010 are derived from the CDSD-

1000 database and lead to lower emission than observed in the wing of the CO2 band.  

Depraz et al. [106]  performed a similar comparison of the CDSD-4000 and HITELOR 

databases against experimental emission of CO and CO2 at high temperatures in a 
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sapphire tube.  At 3200 K, the observed spectral radiance was overestimated by these two 

databases. The radiative transfer modeling of the CO2 4.3 µm band at elevated 

temperatures remains a challenge. 

  The addition of an optional empirical emissivity parameter produces comparable 

qualitatively results to CDSD-4000. The HITEMP database with the optional empirical 

emissivity was chosen for simplicity.  The empirical emissivity parameters in Figure 38 

are c1 = 0.1, centered at c2 = 2079 cm-1 and of width c3 = 150 cm-1, centered around the 

same position as εemp with a small peak emissivity contribution as seen previously in 

Figure 39b.   

 

Figure 40.  Experimental [143] and simulated emissivity of CO2, H2O and CO at 2850 K 

in the 4.3 µm region. 
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   To further evaluate the systematic error associated with this approach, the 

LBLRTM is compared with two statistical narrow band models.  In contrast to line-by-

line calculations, narrow band models average the spectral absorptivity over a narrow 

spectral bandwidth (~ 25 cm-1) producing a smoother absorption coefficient.  RADCAL 

[31] and EM2C [30] narrow band models have been widely used in numerous heat 

transfer calculations to interpret combustion plumes.  EM2C contains statistical narrow 

band parameters based on HITRAN and proprietary French high-temperature extensions 

[30].  RADCAL gas mixture transmissivities are based on experimental data.  A 

FORTRAN code provided with both narrow band models, allows calculation of the 

spectral transmissivities of combustion gases such as CO, CO2, H2O, CH4, and soot.  

These two narrow band models are less accurate for temperatures above 2500 K.  Modest 

and Bharadwaj [107] compared experimental CO2 transmissivities with RADCAL and 

EM2C, which agreed very well with the measured spectra at temperatures above 1300 K 

for the 4.3 µm band.  Demonstrating that the narrow band models accurately predicted 

measured CO2 spectral transmissivity up to 1550 K measurably better than HITEMP.  

However, these spectral models have not been validated with experimental data on 

combustion gases at elevated temperatures (> 2000 K). 

 The narrow-band models were combined with the LBLRTM to predict the CO2 

spectral transmissivity.  The spectral emissivity of CO was computed using the line-by-

line parameter of the HITEMP database as defined in Equation (33) due to the highly 

structured ro-vibrational band at the 2 cm-1 instrument spectral resolution.  The modeled 

plume spectral emissivity in Equation (32) was modified to include the transmittance of 
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CO2 derived from EM2C and RADCAL.  The quality of the fit along with the acquired 

statistical results for each model are then compared to obtain systematic error associated 

with the different spectral models. 

  In order to compare the fit quality from the different spectral models at different 

temperatures, single data cubes at t = 9, 23 and 100 s are compared.  These hyperspectral 

data cubes were spatially averaged in the vertical direction (y-direction) from 9.36 - 54.0 

mm at x = 0.72 mm, approximately equal to the laser beam diameter (44.6 mm).  Figure 

41a shows a single unprocessed broadband image at t = 9 s with a rectangular box 

indicating where the spatial averaging was done.  The corresponding spatially averaged 

spectral radiance is provided with its corresponding spectral model derived from 

LBLRTM, RADCAL and EM2C in Figures 41b-c, respectively.  The optional empirical 

emissivity parameter was not employed to improve the quality of the fit in Figure 41b. 

Best estimates of plume temperature and column densities of CO and CO2 in the gas-

phase were obtained from these spectral models. At t = 9 s the LBLRTM yielded an 

effective gas temperature of 1954 ± 18 K, whereas RADCAL and EM2C gave 

temperatures of 1937 ± 90 K and 1906 ± 10 K, respectively.  The HITEMP database 

appears to be in reasonable agreement with the experimental data at ~ 1900 K in Figure 

39a.  As seen from Figures 41b-c the fit residuals seem adequate at this temperature for 

all spectral models.  From the experimental data in Figure 41, no spectral features of the 

P- and R- branch emission lines that arise from the fundamental CO band between 2000 

to 2220 cm-1 were detected from IFTS.  However, strong emission of the CO2 anti-

symmetric band is observed.  Effective CO2 column densities of 3.46 ± 0.05 molec/cm2, 
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2.83 ± 0.03 molec/cm2, and 3.60 ± 0.02 molec/cm2 from LBLRTM, RADCAL and EM2C 

were obtained respectively.  

 

Figure 41.  (a) Un-processed broadband image at 9.2 s with rectangular box indicating 

spatial averaging (9.36 mm ≤ y ≤ 54.0 mm) for observed data at x = 0.72 mm and 

modeled by (b) LBLRTM, (c) RADCAL and (d) EM2C. 

 

  The observed spectral radiance with their spectral fits are shown in Figures 42a-c 

for t = 23 s and Figures 42d-f for t = 100s.  Table 6 summarizes the statistical results 

from the nonlinear fit at t = 9, 23 and 100 s.  The reported statistical uncertainty for each 

of the result is defined as the half-width of the 95% confidence interval and does not 
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include systematic errors associated with the assumption of a homogeneous plume or the 

effects of turbulence.  Note that the optional empirical emissivity parameter was only 

used at t = 100 s or T ≅ 2900 K.  Overall the three spectral models yielded low statistical 

errors of ΔT ≤ 90 K as well with 1 and 13 % in CO2 and CO column densities 

respectively.  The systematic errors associated with different spectral models are on the 

order of ΔT ± 15 K for plume temperature up to 2500 K, and ± 18 % for column 

densities.  However, at gas temperatures above 2500 K, spectral modeling of the 

observed combustion gases becomes challenging due to underestimation of the band 

wing (high J) of the 4.3 µm fundamental asymmetric CO2 band and/or overestimation in 

the core band (low J) from the currently available spectral databases [106-108, 141].  

Based on the quality of the fit, LBLRTM and RADCAL had the smallest residuals.  The 

evolved boundary layer plume of laser irradiated porous graphite at 777 W/cm2 was 

further investigated by modeling the observed spectral radiance with the LBLRTM.  In 

summary, it was preferred the line-by-line radiative transfer model with the optional 

empirical emissivity compensating for the CO2 4.3 µm band wing and the use of a gray-

body, soot emissivity for simplicity.  The spatial and temporal descriptions of the plume 

developed below are based on this version of the model.  The effective temperatures 

represent a nonlinear weighting along the IFTS line of site. 
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Figure 42.  Comparison of radiative transfer models with observed spectral radiance at x 

= 0.72 mm for (a)-(c) t  = 23 s and (d)-(f) t= 100 s. 

 

 

 
 

0

500

1000

 

 
Data
Model
Residual

0

500

1000

L
 (

µ
W

/(
c
m

2
 s

r 
c
m

−
1
))

2000 2200 2400

0

500

1000

Wavenumber, ν (cm−1)

0

500

1000

1500L
B

L
R

T
M

0

500

1000

1500R
A

D
C

A
L

2000 2200 2400

0

500

1000

1500

E
M

2
C

(b)

(c)

(a) (d)

(e)

(f)



 

 116 

Table 6.  Summary of statistical results obtained from LBLRTM, RADCAL and 
EM2C at 9, 23 and 100 s. aGas temperature, (K). bColumn density, (1017 molec/cm2). 

*Denotes undetectable spectral signature 

 t = 9 s t = 23 s t = 100 s 
 aT bCO bCO2 aT bCO bCO2 aT bCO bCO2 
 
LBLRTM 

1954 
± 
18 

* 3.46 
± 

0.05 

2497 
± 
23 

4.53 
± 

0.40 

4.44 
± 

0.05 

2901 
± 
36 

5.29 
± 

0.54 

5.91 
± 

0.06 
 
RADCAL 

1937 
± 
90 

* 2.83 
± 

0.03 

2406 
± 
72 

4.45 
± 

0.43 

3.60 
± 

0.04 

2640 
± 

19.42 

5.58 
± 

0.78 

4.71 
± 

0.02 
 
EM2C 

1906 
± 
10 

* 3.46 
± 

0.05 

2512 
± 
16 

3.37 
± 

0.34 

3.78 
± 

0.05 

2900 
± 
69 

4.08 
± 

0.58 

4.36 
± 

0.003 
 

 

Profiles of Temperature and Column Densities 

  Temporal variations in plume temperature and column densities were investigated 

by spatially averaging column pixels along the y-direction between 9.36 – 54.0 mm, a 

distance equal to the laser beam diameter of ~ 44.6 mm, as seen from Figure 41a.  The 

observed spectral radiance was modeled using LBLRTM for the plume boundary layer in 

the first 3 millimeters from the surface (x-direction).  Figure 43 shows the best estimate 

of temporal gas-phase temperature from radiative transfer modeling and the measured 

graphite surface temperature from high and low temperature optical pyrometers.  The 

surface temperature systematic errors associated from both optical pyrometers are larger 

at lower temperatures with ΔT ≅ 300 K and at steady state are of ΔT = 142 K.  At 3 mm 

from the surface, the gas temperature in the boundary layer appears uniform with almost 

no variation in temperature.  Plume temperature rises from 1500 K to steady value of ~ 

2900 K while surface temperature reaches a steady value of ~ 2500 K.  Initially, the 
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plume temperature is lower than the surface temperature, but rises above surface 

temperature at 20 s.  At 40 s, the difference between surface and gas temperatures, is ~ 

478 K.  The rise in gas temperature may be partially attributed to the plume absorption of 

incident radiation by the plume as it becomes thicker.  Similar observations have been 

reported from the evolved combustion plume of laser irradiated carbon-black pigmented 

PMMA [52].   For the initial heating period, the process is driven by the growth of 

buoyancy boundary layer plume near the hot graphite surface, convection from the 

graphite surface transfer to the plume heating the gas at earlier time.  As surface 

temperature increases, the rate of decomposition products increases at the boundary layer.  

As the plume becomes thicker, the absorption of laser radiation increases, resulting in 

attenuation of the incident radiative flux reaching the surface, seen in Figure 43.  

However, there is a contribution to the increase in plume temperature due to exothermic 

reactions of decomposition products with air.  The laser energy is deposited in the gas 

phase rather than at the surface due to particulates being ablated towards the boundary 

layer plume, as seen from visible imagery in Figure 38.  The hot particulates absorb the 

incident laser radiation, acting like blackbody absorbers and consequently increasing the 

plume temperature.  Alternatively, the plume could be hotter because particulates are 

burning in the flow. 
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Figure 43.  Surface and plume temperature at 0.72 – 2.88 mm. 

 

  Although the gas phase plume temperature remained the same from 0.72 to 2.88 

mm away from the surface, variations in CO and CO2 column densities were observed in 

the plume.  Figure 44 illustrates the temporal evolution of CO and CO2 column densities 

at various distances from the surface.  At 0.72 mm, from the surface-boundary layer, CO2 

concentration is predominant at earlier time.  However, the CO fundamental ro-

vibrational band was not detected from IFTS.  As time progressed, CO concentration 

increased rapidly until at 25 s it overlapped with CO2.  For the gas-phase temperature 

range of 1500-2440 K (t < 25 s), the CO2 concentration was higher than CO.  At the 
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surface-boundary layer (0.72 mm) the results suggest that both CO and CO2 may be 

produce from the heterogeneous oxidation of carbon at the surface [73, 77].  

 

 

Figure 44.  Temporal evolution of CO and CO2 column densities at (a) 0.72 mm, (b) 1.44 

mm, (c) 2.16 mm, and (d) 2.88 mm away from the surface in the boundary layer. 
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 The CO concentration increases above CO2 at t = 32 s where it continues to rise 

reaching steady state at 63 s in Figure 44.   At later times CO2 rises further, crossing 

again with CO where it continues to slightly go up above CO.  This rise appears to be 

associated to the conversion of CO to CO2 in the gas phase.  As distance increases away 

from the surface towards the boundary layer (Figures 44a to 44d), the rate of CO2 

production grows much rapid farther away from the surface relative to CO. 

  The spatial distribution of gas-phase plume and molecular species were developed 

from LBLRTM at steady state in Figure 45.  The spatial distributions are for steady-state 

values at 41 s ≤ t ≤ 120 s.  Figure 45a and Figure 45b shows the respective spatial 

distributions of column densities for CO and CO2 derived from LBLRTM calculations.  

Statistical fit uncertainties are small, typically < 7 %.  The column densities are 

significant, ~ 1017 molec/cm2 and comparable to those observed in laminar flames with 

good combustion efficiency [18].  The molecular species travel upward driven by 

buoyancy as previously seen from the visible imagery in Figure 38.  Also, the overall CO 

column density expands up to ~ 5 mm away from the surface and up to ~ 80 mm in the 

vertical direction.  On the other hand, the CO2 column density extends much farther away 

to x ≅ 6.5 mm and y ≅ 89 mm.  At y = 30 mm it can be seen that the CO column density 

is greater at the surface-boundary layer of x = 0.72 mm than CO2 and that CO2 is 

maximum much farther away in the plume at x = 2.88 mm.  
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Figure 45.  Spatial maps at steady state (41 s ≤ t ≤ 120 s) of (a) CO, (b) CO2 and (c) 

plume temperature. 
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away from the surface and hot gases rise, driven by buoyancy and fume hood flow rate. 

The statistical fit uncertainty in temperatures are generally small ΔT  < 37 K, however in 

the region where Tg is ~ 3000 K, the statistical error bounds are larger with ΔT ~ 250 K.  

The larger error bounds are expected at temperatures close to 3000 K due to limitation on 

the total internal partition sum (TIPS) up to 3000 K [144, 145].  As the plume rises driven 

by buoyancy it bends at the edge of the graphite target at y = 60 mm where it continues in 

the free stream towards the fume hood where temperature decreases.  The interplay 

between heterogeneous and homogeneous combustion kinetics reactions are further 

discussed below. 

Discussion 

Heterogeneous and Homogeneous Kinetics 

  The simplified global heterogeneous and homogeneous reactions of carbon 

oxidation considered in this work are summarized in Table 3.  Based on the results in 

Figure 44a, significant CO2 concentration was observed at the surface boundary layer 

interface, it is possible that CO and CO2 are made at the surface as primary products of 

the carbon-oxygen global heterogeneous reaction (29) [90-93, 146].  However, general 

consensus has been that for temperatures greater than 1200 K, the CO2 production is 

small [74].  At lower temperatures both CO and CO2 are present [75, 76].  From 

experimental results at much higher temperatures, CO2 at the surface-boundary layer 

(0.72 mm) is significant.  These results agree with Mitchell et al. [78] predictions on 

surface production of CO2 for temperatures as high as 1700 K.  Moreover, at T < 1573 K, 

carbon is consumed in a kinetically first order reaction with the stoichiometric equation 

of 4C + 3O2 = 2CO2 + 2CO, whereas at T > 1770 K, a zeroth-order reaction sets, 
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corresponding to 3C + 2O2 = CO2 + 2 CO [147].  The overall temporal distributions of 

column densities in Figure 44 are consistent with the global combustion mechanism of 

producing CO at the surface followed by conversion of CO to CO2 in the gas phase.    

  With the assumption that both CO and CO2 are primary products from the C(s)-O2 

reaction, then the primary product ratio, α/β, has the form of Equation (31).  The 

[CO]/[CO2] product ratio at 0.72 mm is provided in Figure 46, where the product ratio 

increases with increasing surface temperature (2157 K ≤ Ts ≤ 2530 K).  This increase 

indicates the heterogeneous reaction, whereas maximum in the [CO]/[CO2] ratio must 

indicates a homogeneous reaction [146].  This inflection is observed with the decrease of 

the product ratio at T ~ 2506 K.  An effective activation energy, Ea, of 149.40  ± 10.31 

kJ/mol was obtained by fitting the product ratio with Equation (31).  
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Figure 46.  CO/CO2 ratio as a function of inverse surface temperature at the surface-

boundary layer interface (0.72 mm), with α/β = 4910 exp(-17,970/T) . 

 

 The corresponding reaction rate for the surface production of CO and CO2 in 

Equation (29) is defined as [90-93]: 
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(35) 
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heterogeneous reaction (29) is Ea = 149.37 kJ/mol [90-93].  For laser irradiated graphite 

at 777 W/cm2, the obtained effective activation energy from Figure 46 is in agreement 

with the activation energy of reaction (29), suggesting production of CO and CO2 at the 

surface-boundary layer of 0.72 mm for the higher surface temperatures of 2157 - 2530 K.   

  By following the same analysis in Figure 46, effective activations energies for the 

[CO]/[CO2] ratio were computed for the temporal data obtained earlier in Figures 44(b-

d).  Figure 47 shows the effective activation energies obtained from Eq. (16) for the 

boundary layer plume from 0.72 to 2.88 mm.  As distance increases, the effective 

activation energy decreased.  At 0.72 and 1.44 mm, the corresponding effective activation 

energies were 149.40  ± 10.31 kJ/mol and 140.17  ± 9.39 kJ/mol respectively.  These 

results, up to 1.44 mm away from the surface, agree with the heterogeneous reaction 

activation energy for the formation of CO and CO2.   Moreover in the boundary layer at 

2.16 mm, an effective activation energy of 128.70  ± 8.69 kJ/mol appears to agree with 

the Howard et al. [96] value of 125.52 kJ/mol for homogeneous reaction (30) in the gas 

phase.   
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Figure 47.  Effective activation energies as a function of distance from the surface 

towards the boundary layer. 

 

The corresponding reaction rate for the homogeneous reaction (30), R30, is defined as 
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k30 = (1.3x10

11m3 / kmol ⋅ s)[H2O]
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amounts of water vapor in the free stream acts as a catalyst on the CO oxidation in the 

gas phase [79, 148]. 

  Linjewile et al. [146] derived an analytical solution for the concentrations profiles 

of CO and CO2 by considering the global oxidation reactions in Table 3 with the addition 

of the endothermic heterogeneous reaction (37) and its corresponding reaction rate 

defined as [90-93]: 

  C +CO2
k37⎯ →⎯ 2CO        (37) 

R37 = k37[O2 ]
k37 = (6x10

7m / s)exp(−29,790 /T )
     (38) 

The CO/CO2 product ratio can be predicted from Linjewile et al. [146] analytical solution 

defined as: 

[CO]
[CO2 ]

= ψ + 2ζ
(1+η)(1+ζ )exp −η(1− 2r / da ){ }−ψ − 2ζ

,

ψ = α / β
α / β +1

ζ = k37 (0.5α / β +1)
k29 (α / β +1)

η = k30φ
  (39) 

 where, 2r/da is the dimensionless radial position, φ = da/2Deff, da is the particle diameter 

and Deff is the effective diffusivity.  Since this model was developed for the combustion 

of a spherical graphite particle, φ is taken as an adjustable empirical parameter to predict 

the experimental data of Figure 46. 
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Figure 48.  Comparison between the CO/CO2 product ratio predicted by Equation (39) 

with experimental data (1.2 % relative humidity) at x = 0.72 mm and Tognotti et al. [149] 

data with 20 % oxygen in dry gas and 3.5 % relative humidity. 
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Equation (39) in Figure 48.  The data is shown as a function of the inverse surface 

temperature from both optical pyrometers.  At lower temperatures, Equation (39) agrees 

with the low temperature optical pyrometer measurements.  However at the higher 

temperatures (T > 2500 K) where the [CO]/[CO2] ratio decreases (rollover), the model 

2 4 6 8 10 12 14
0

0.5

1

1.5

104/T (K−1)

[C
O

]/
[C

O
2
]

 

 

High T pyrometer
Low T pyrometer

α /β

Equation (39)

Tognotti et al. [149]

Dry gas

3.5% H
2
O



 

 129 

overestimates the data by 3 %.  When comparing with Tognotti et al. [149] experimental 

data with 3.5 % water vapor in a 20 % oxygen atmosphere, their results rolls much 

quicker at lower temperatures.  This increase indicates heterogeneous reaction, whereas 

the rollover in the [CO]/[CO2] ratio must reflect homogeneous reaction [146].  From our 

experiments with a much lower water vapor concentration of 1.17 %, the [CO]/[CO2] 

inflection occurs at much higher temperature, somewhere in between the dry and humid 

data points of Tognotti et al. [149].  Since water vapor act as a catalyst in the 

homogeneous reaction, the rollover will occur much rapidly at higher water vapor 

concentrations as seen from Figure 48 [79, 146, 148].  Table 7, compares Linjewile et al. 

[146] simulation parameters and the empirical parameters used to predict the results of 

Figure 46.  For model calculations using Equation (39), φ was taken as an adjustable 

empirical parameter to account for the effective diffusivity and surface length, the bulk 

oxygen water concentrations were taken as 20 and 1.17 % respectively. This adjustable 

empirical parameter φ was much lower than Linjewile et al. [146] reported value, 

suggesting that the assumed effective diffusivity from their model is inadequate to model 

our data.  The dimensionless radial position, 2r/da, was assumed as 1.6.  The activation 

energy for reaction (37), B = Ea/R, was modified to 33,790 K to improve the model 

prediction with our results, which is within 10 % of other reported values in the literature 

[75, 150].  Equation (39) does not account for bulk graphite targets, surface porosity, sub-

surface reactions within the pores and particulates being ejected into the combusting gas 

plume.  Hayhurst and Parmar [73] tabulated the measured α/β ratio from the literature, 

where the empirical effective activation energies varied depending on the type of carbon.  
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Also, the results in Figure 46, requires a large activation energy in the α/β ratio, 

consistent with Mitchell [151] combustion of coal char particles.  Overall, Equation (39) 

requires an empirical modification to model the present laser irradiated porous graphite 

data.  However, this empirical modification is inadequate to account for particulates 

being ejected into the plume and sub-surface reactions, seen from Figures 37-38.   

Table 7.  Comparison of simulation parameters for Equation (39). 

Simulation parameters Linjewile et al. [146] Current work 
H2O 3.5 % 1.17 % 
O2 20 % 20 % 
α/β 70 exp(-3,070/T) 4910 exp(-17,970/T)  
k37 6 x107 exp(-29,790/T) 6 x107 exp(-33,790/T) 
φ 1.20 x 10-5 0.20 x 10-7 

 

  The heterogeneous and homogeneous kinetics interplay has been shown primarily 

from numerical simulations for porous graphite in steady state [87, 88, 150].  With the 

ability to investigate the evolved combustion plume at high spatial resolutions of 0.52 

mm2 per pixel, the gas temperature with the CO and CO2 column densities profiles in the 

buoyant flow direction at steady-state surface temperature (~ 2500 K) is shown in Figure 

49.  The inset in Figure 49 shows the path along the buoyant flow where plume 

temperature and effluent concentrations were plotted as a function of time, t, represented 

as t = d/v, where the vertical y-distance is d, and an estimated macroscopic plume 

velocity from the visible imagery (Figure 38) is taken as v ~ 491 mm/s.   

 

  The results in Figure 45 are consistent with the global heterogeneous and 

homogeneous reactions where CO is being made close to the surface and later oxidizing 
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to CO2 in the gas boundary layer.  A secondary plume that evolves from the surface was 

seen in the visible imagery (Figure 38d) at ~ 2 mm from the surface.  This was correlated 

with observations in the time averaged CO column density map in Figure 45a with a 

similar shape of a bright plume jet at ~ 2 mm away from the surface, where CO 

concentration is highest.  From Figure 49, CO column density is greater than CO2 at the 

surface-boundary layer of 0.72 mm (t = 0.05 s), as time increases CO2 column density 

continues to increase along the boundary layer while CO declines rapidly.  When 

comparing Figure 49 with Chelliah et al. [88] numerical simulations of porous graphite at 

surface temperatures of 2000 K, these results are qualitatively consistent with the kinetics 

interplay between heterogeneous and homogeneous reactions, where surface reactions 

increases the surface flux of CO thus oxidizing along the boundary layer to produce CO2, 

similar to a double film structure [75].  Also, Chelliah et al. [88] showed a monotonic 

variation in the CO2 column density in moist air.  As surface temperature increases, the 

distance to the peak gas-phase CO2 column density becomes greater, where at Ts = 2000 

K, the flame location is ~ 1.0 mm [88].  At higher surface temperature of ~ 2500 K, we 

observed that CO2 peaked at ~ 2.0 mm, qualitatively consistent with their simulations of 

increasing distance. 
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Figure 49.  Profiles of gas-phase species column density and plume temperature along the 

buoyant driven boundary layer, with surface temperature at ~ 2500 K as a function of t = 

d/v. Inset: spatial plume temperature map with vector showing the path parallel to the 

surface along the boundary layer driven by the buoyant flow of the shown profiles.   

 

Conclusions 

  The combustion plume characteristics from porous graphite targets irradiated in 

the range between 0.2 – 4 kW/cm2 were shown from high-speed imagery.  As laser 
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the plume fluid dynamics change radically due to a large flux of CO, CO2 and carbon 

particulates emanating from the surface.  A detail fluid dynamics analysis to understand 

this effect will be explored in future work.  Emissive plumes from laser irradiated 

graphite at 0.8 kW/cm2 were quantified from hyperspectral imaging-FTIR.  A simplified 

homogeneous, single-layer, radiative transfer model was developed to model temporal 

and spatial distributions of plume temperature and column densities.  At surface 

temperatures as high as 2500 K, the heterogeneous reaction corresponded to the primary 

combustion products of CO and CO2, as observed at the surface-boundary layer interface 

(0.72 mm).  Further from the surface towards the boundary layer, CO conversion to CO2 

was observed, agreeing with the global homogeneous reaction of Howard et al. [96].  The 

[CO]/[CO2] ratio at x = 0.72 mm, was compared with Linjewile et al. [146] analytical 

solution.  At lower temperatures, the analytical solution predicted the results.  However at 

the higher temperatures (T > 2500 K) where the [CO]/[CO2] ratio decreases (rollover), 

the model overestimates the data by 3%.  This increase indicates heterogeneous reaction, 

whereas the rollover in the [CO]/[CO2] ratio must reflect homogeneous reaction [146].  

Since water vapor act as a catalyst in the homogeneous reaction, the rollover will occur 

much rapidly at higher water vapor concentrations [79, 146, 148].  Overall, with 

Linjewile et al. [146] analytical solution required an empirical modification to model the 

present laser irradiated porous graphite data.  However, this empirical modification was 

inadequate to account for particulates being ejected into the plume and sub-surface 

reactions.  The steady-state CO, CO2 and plume temperature profiles along the buoyant 

driven boundary layer plume, were consistent with Chelliah et al. [88] numerical 
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simulations of porous graphite, where surface reactions increases the surface flux of CO 

thus oxidizing along the boundary layer to produce CO2, similar to a double film 

structure [75].  We intend to explore the combustion kinetics of graphite targets in 

laminar flows of M = 0.2 – 0.9 at high spatial resolutions to benchmark experiments with 

detailed reactive fluid dynamics simulations. 
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VI.  Conclusions 
   

Hyperspectral imaging FTIR was first developed to investigate the evolved 

emissive plumes of laser irradiated FRP, PMMA and graphite targets at close focal 

distances.  The first two-dimensional boundary layer spatial maps of plume temperature 

and effluent concentrations were reported for irradiated targets at high spatial resolutions 

(0.52 to 0.81 mm2/pixel).  The use of a simplified homogeneous single layer line-by-line 

radiative transfer model proved to be adequate to retrieve species concentrations and 

plume temperature both spatially and temporally with low statistical errors.  Statistical 

narrow-band models (EM2C and RADCAL) were validated with experimental 

combustion data at temperatures as high as 2900 K.  Imaging FTIR also proved to be an 

efficient tool for investigating the laser beam profile and surface temperature 

distributions both temporally and spatially.  A simplified analysis on the heating process 

allowed understanding the influence of laser wavelength (λ = 10.6 µm and λ = 1.06 µm) 

on surface heating rates.  Effective activation energies were obtained from the temporal 

evolution of molecular species at the surface-gas boundary layer.  These were correlated 

with established kinetics models, demonstrating the applicability of IFTS for kinetics 

interpretation at high spatial resolutions. 

The spectral analysis at gas temperatures of 1000 K yielded statistical errors of ± 

6 K, however systematic errors associated with the radiative transfer model was greater 

than 100 K.  At plume temperatures as high as 2900 K, the LBLRTM and statistical 

narrow band models (EM2C and RADCAL) were employed to fit the data.  Comparisons 

were made with the different spectral models to determine their statistical and systematic 
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errors.  Overall, the three spectral models yielded low statistical errors of ΔT ≤ 90 K and 

less than 13% in molecular species column densities.  The systematic errors associated 

with different spectral models are on the order of ΔT ± 15 K up to plume temperatures of 

2500 K and approximately ~ 18 % in species concentration.  However, at gas 

temperatures above 2500 K, spectral modeling of the observed combustion gases became 

challenging due to underestimation of the band wings of the 4.3 µm fundamental 

asymmetric CO2 band or overestimation of the central CO2 spectral radiance derived from 

the currently available spectral databases [106-108, 141].  In the region where the gas 

temperature was ~ 3000 K, the statistical error bounds are larger with ΔT ± 250 K.  The 

large error bounds at these elevated temperatures were due to limitation on the total 

internal partition sum (TIPS) up to 3000 K that is used in the LBLRTM [144, 145]. 

The instrument signal-to-noise ratio (SNR) at the peak of the spectrum exceeded 

87:1 for plume temperatures above 2900 K with a 2.0 ND filter, whereas SNR exceeded 

60:1 using a 0.3 ND filter at ~ 1300 K.  The imaging-FTIR spectrometer 16-tap FPA 

saturates at 65,000 counts, by using a 0.3 optical density neutral density (ND) filter the 

detector saturates at 300 µW/(cm2 sr cm-1).  For plume temperatures around 1000 K, the 

DC component of the interferogram represents 28 % of the dynamic range, with the 

interferometer producing an 8 % modulation at ZPD.  With a 2.0 ND filter, the plume 

radiance at 2900 K is 1000 µW/(cm2 sr cm-1) where the ratio of the DC component to 

center burst is 72 %. 

High-speed visible, infrared broadband imagery and non-imaging FTIR 

spectroscopy augmented the results obtained from IFTS.  Broadband imagery without 
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spectral resolution from both the MWIR IFTS InSb array and the visible camera provided 

information on the structure and fluid dynamics of the evolved plumes.  Temporal 

averaging of 1.2 x 106 frames over 120 s produced steady images that defined the spatial 

extent and structure of the combustion products.  From high-speed visible imagery, the 

plume velocity was estimated at framing rates of 350 Hz.  The temporal dependence of 

the non-imaged FTIR spectrometer allowed identifying the LWIR bands of molecular 

species at high spectral resolutions of 0.25 cm-1.  Thus allowing identifying complex 

molecular species in the plume from laser irradiated polymeric materials.  

 The use of near-IR fiber lasers are of growing interest on laser lethality, where 

only a few experiments have been dedicated to investigate laser-materials interaction at a 

wavelength of 1.07 µm.  Polymer targets have characteristically poor absorption in this 

region.  Because of this, pigments are commonly added to acrylic thermoplastics (i.e. 

PMMA) for absorption in the near-IR.  Laser lethality experiments were scaled at the 

near-IR laser radiation for polymer and graphite targets where experiments have been 

conducted with a 10.6 µm CW CO2 laser [52, 71].  The oxidation kinetics is of particular 

interest with high energy lasers and elevated irradiances.  Particularly, the temporal and 

spatial CO/CO2 kinetics was studied for laser irradiated FRP, PMMA, and graphite 

targets.  For laser heated graphite targets irradiated at 0.8 kW/cm2, the results were 

consistent with the kinetics interplay between heterogeneous and homogeneous reactions, 

where surface reactions increases the surface flux of CO thus oxidizing along the 

boundary layer to produce CO2, similar to a double film structure [75].  Moreover, at 4 

kW/cm2, the shear flow is radically changed due to a large flux of CO, CO2 and carbon 
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particulates from the surface.  From optical pyrometry, surface temperature was exceeded 

above the carbon sublimation temperature of 4000 K [134-136].  It is likely that surface 

sublimation of carbon dominates the plume dynamics above 4000 K.        

  As part of an effort to develop IFTS for laser lethality application, we began with 

this study of buoyant flow above FRP, PMMA, and porous graphite surfaces.  Thus 

setting the foundation to understand the fundamentals mechanism of laser irradiated 

targets, primarily from spectral observations.  These results allowed setting the 

foundation for future experiments aimed to close the gap between the empirical lethality 

databases and fundamental modeling.  The kinetics of combustion above graphite 

samples in M = 0.1 - 0.9 laminar flows is of particular interest to both the combustion and 

laser communities, where well established kinetics models exists.  Future work will be 

focused on investigating the combustion kinetics in laminar flows to merge experiments 

with detailed reactive fluid dynamics simulations.   

 

Key Results 

  This research effort has demonstrated the ability to monitor the boundary layer 

plume of laser irradiated targets from imaging FTIR at spatial resolutions as high as 0.52 

mm2 per pixel.  We reported the first spatial maps of plume temperature and column 

densities profiles at the surface-boundary layer from laser irradiated fiberglass reinforced 

polymer, PMMA, and porous graphite targets.  These were extracted from fitting the 

observed spectra using a simplified radiative transfer model.  Overall the use of a single-
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layer plume model to retrieve species column densities proved to be an adequate 

approximation. 

Fiberglass Reinforced Polymers  

  A first quantitative analysis of emissive plumes from laser-irradiated fiberglass 

composite surfaces was developed from fast framing hyperspectral observations.  We 

identified H2O, CO, CO2, and hydrocarbon species in the gas phase from their 

characteristic FTIR spectral signatures.  Time dependent, spatial maps of gas temperature 

and column densities were developed from a simplified radiative transfer model.  The 

temporal evolution of temperature and column density demonstrated the feasibility of 

using IFTS to study the combustion kinetics interplay between CO and CO2 spatially 

throughout laser irradiation.  Our observations were consistent with prior FTIR fiberglass 

study [24] where initial larger concentrations CO2 were somewhat larger than CO.  A 

detailed evaluation of pyrolysis kinetics is complicated due to the chemical structure of 

the epoxy fiberglass composite.  The mechanisms controlling the gas plume from these 

laser irradiated surfaces are unclear and require further analysis.  

Poly(Methyl Methacrylate) 

  The thermal degradation of carbon black pigmented PMMA irradiated in air with 

a 1.06 µm Nd:YAG laser was investigated quantitatively from imaging and non-imaging 

FTIR spectroscopy.  With the use of IFTS, we developed the first two-dimensional 

spatial maps of temperature and MMA concentrations from emissive plumes in the 

boundary layer.  Based on the characteristic FTIR spectra in the gas phase plume, the 

primary decomposition product was MMA.  Moreover, the non-imaged LWIR FTIR 



 

 140 

spectrum of the plume was analyzed semi-quantitatively to identify the presence of other 

molecular species in the plume.  However, the band-integrated radiance for the C-O 

stretching at 1159 and 1202 cm-1 shows considerable exponential growth.  By plotting the 

other spectral bands as a function of the 811 cm-1 integrated radiance, the C-O stretching 

at 1159 and 1202 cm-1 seem to have an additional kinetic influence as oppose to the other 

features which are linear.  The linear bands indicate the same emitter, whereas a 

nonlinear feature reflects another emitter contributing to the signal.  Based on our 

observations, it appears that methyl pyruvate is present as a product of thermal 

decomposition of PMMA in air.  This is consistent with prior studies reporting the 

presence of methyl pyruvate when PMMA is thermally decomposed in air [70, 117, 119].  

However, the currently available spectral databases are rather limited and insufficient for 

our spectral fitting to model complex hydrocarbon molecular species.     

  Imaging FTIR also proved to be an efficient tool to investigate surface 

temperature distributions both temporally and spatially with low statistical errors.  The 

spatial temperature distribution allowed visualizing the laser footprint that is important 

for laser lethality experiments.  A simplified analysis on the laser heating process 

permitted understanding the difference between the surface heating rates for irradiated 

PMMA with a 10.6 µm and 1.06 µm laser.  The predictions agreed with the experimental 

data where the initial heating rate is dominated by absorption of incident radiation, and 

then when the surface temperature reaches a steady state, conduction within the solid 

occurred [52].  The use of near-IR fiber lasers are of growing interest within the laser 
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lethality community, where only a few experiments have been dedicated to investigate 

polymer degradation at this wavelength. 

  An effective activation energy of 30.83 ± 8.29 kJ/mol was obtained for a pixel at 

the surface at surface temperatures between 455 - 600 K.  This low activation energy is 

rather consistent with surface desorption of the monomer.  Therefore at the 21.7 W/cm2 

irradiance, vaporization and desorption kinetics describe the rate of production of MMA 

at the surface. 

Graphite   

  Plume characteristics from high-speed infrared and visible imagery as a function 

of laser irradiance (0.2 - 4 kW/cm2) were documented for porous graphite targets.  The 

degree of bending was correlated with broadband infrared imagery, where at higher 

irradiances the plume extended farther away from the surface in the x-direction and later 

bending in the y-direction by buoyancy.  The lower the irradiance, the faster the plume 

bends closer to the surface.  Furthermore, for laser irradiated graphite at 4 kW/cm2, the 

plume fluid dynamics was remarkable since surface temperature exceeded the carbon 

sublimation temperature of 4000 K [134-136].  The moment flux from the surface 

appears comparable or larger than the than the buoyant atmospheric flow.  It is likely that 

surface sublimation of carbon dominates the plume dynamics.    

  At irradiances of 0.8 kW/cm2, the combustion plume characteristics in a buoyant 

flow were documented using high-speed visible imagery.  A steady diffuse combustion 

plume was observed at steady-state 6mm away from the surface, also a secondary jet 

flame was also seen at 2 mm from the surface.  Apparently, micro-cracks in the porous 
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graphite occasionally develop, ejecting burning particulates into the gas plume.  The 

ability to monitor the evolved combustion plume from high-speed imagery allowed to 

elucidate the plume dynamics, however detailed reactive fluid dynamics interpretation as 

a function of laser irradiances was outside the scope of this work and will be subject to 

future experiment.   

  Furthermore a quantitative analysis was made from hyperspectral imaging FTIR 

for porous irradiated graphite at 0.8 kW/cm2.  At surface temperatures as high as 2500 K, 

the heterogeneous reaction corresponded to the primary combustion products of CO and 

CO2, at the surface-boundary layer (x = 0.72 mm).  The CO, CO2 and plume temperature 

profiles along the boundary layer driven by buoyancy were consistent with Chelliah et al. 

[88] numerical simulations of porous graphite, where surface reactions increases the 

surface flux of CO thus oxidizing along the boundary layer to produce CO2, similar to a 

porous graphite double film structure [75]. 

 

Summary 

  Preliminary results (Appendix A) served as proof of concept to show the ability to 

monitor the evolving, spatial distribution of the state of the surface-gas-boundary layer 

interface from laser irradiated targets.  For the first time, a qualitatively analysis of gas 

phase combustion plumes above the surface of laser irradiated fiberglass composites was 

shown, from fast framing hyperspectral imagery observations.  Painted and unpainted 

fiberglass reinforced polymers were irradiated with a 1.06 µm Nd:YAG laser.  Spectral 

emission of CO, CO2, and HC species were identified in the gas phase.  High-speed 
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imagery was obtained using a low-pass filter for the interferograms, illustrating 

significant turbulent behavior during laser irradiation.  Spatial brightness temperature 

maps exceeded 600 K, showing variation in the ratio of [CO2]/[CO] thus indicating 

interplay between heterogeneous and homogeneous kinetics.  Based on these 

observations a quantitative analysis of unpainted fiberglass was done to develop spatial 

molecular concentration and temperature maps. 

 A first quantitative analysis of emissive plumes from laser irradiated fiberglass 

composite surfaces was developed from fast framing hyperspectral observations in 

chapter III.  A single-layer radiative transfer model was developed for the spectral region 

from 2000 to 2400 cm-1 to estimate spatial maps of temperature and column densities of 

CO and CO2 from the hyperspectral imagery.  The spectral model was used to compute 

the absorption cross sections of CO and CO2 using spectral line parameters from the high 

temperature extension of the HITRAN.  An empirical emissivity was included in the 

model near 2100 cm-1 where it was tentatively attributed to a triple carbon bond 

hydrocarbon emission.  This hydrocarbon spectral feature is not included in the HITRAN 

database and appears to be the most likely contribution to a minor CO P- branch 

asymmetry.  Without the addition of this empirical modification, the fit RMSE is 1.35 

greater than with the empirical emissivity.  Spatial maps of gas temperature and CO and 

CO2 column densities were developed for a single hyperspectral cube (t = 24 s) with low 

statistical error bounds.  Also, the temporal evolution of temperature and column 

densities for a single pixel partially illustrates the evolving plume.  The dynamic range of 

the IFTS instrument is limited by the DC component and modulation depth, so both pre-
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combustion and post combustion images could not be obtained with the same instrument 

settings.  Our observations were consistent with a prior FTIR fiberglass study [24] where 

initial larger concentrations CO2 are somewhat larger than CO. 

 The thermal degradation of laser-irradiated black PMMA in air irradiated with a 

1.06 µm Nd:YAG laser was investigated quantitatively from infrared spectroscopy in 

chapter IV.  With the use of IFTS, the first two-dimensional spatial maps of temperature 

and MMA column density from emissive plumes in the boundary layer were developed.  

Based on the characteristic FTIR spectra in the gas phase plume, the primary 

decomposition product was the monomer MMA.  A simplified radiative transfer model 

was used to extract spatial maps of temperature and MMA column density.  However the 

spectral database for radiative transfer modeling of complex hydrocarbon spectra is rather 

limited and insufficient for our spectral fitting.  The experimental absorption coefficient 

of MMA used in our model was measured by Wakatsuki [121] at atmospheric pressure 

with an MCT FTIR spectrometer at 1 cm-1 spectral resolution.  This database is a 

combination of experimentally measured, interpolated and extrapolated spectra for the 

temperature range of 300 - 1400 K in increments of 50 K.  Moreover, the use of a 

homogeneous plume radiative transfer model to extract column densities and temperature 

provided to be an adequate approximation.  Imaging-FTIR also proved to be an efficient 

tool to investigate surface temperature distributions both temporally and spatially with 

low statistical errors.  An effective activation energy of 30.83 ± 8.29 kJ/mol was obtained 

for a pixel at the surface at surface temperatures between 455 - 600 K.  This low 

activation energy is rather consistent with surface desorption of the monomer.  Therefore 
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at the 21.7 W/cm2 irradiance, vaporization and desorption kinetics describe the rate of 

production of MMA at the surface.  Effective activation energies in the plume correspond 

to degradation initiated by random scission [67, 69], which suggested formation of 

methyl pyruvate, from the reaction of MMA molecules with air.  This demonstrates the 

ability of IFTS to extract activation energies at discrete positions in space. 

 The combustion mechanisms for laser irradiated graphite targets were 

investigated experimentally from hyperspectral imaging Fourier transform spectroscopy 

(IFTS) in chapter V.  Porous graphite targets were irradiated using a 1.06 µm 20-kW 

ytterbium fiber laser.  Plume dynamics are shown from high-speed imagery for power 

densities of 0.3 to 4 kW/cm2.  Emissive plumes from the oxidation of graphite in air at 

0.8 kW/cm2 were monitored using a mid-wave infrared imaging Fourier-transform 

spectrometer with high spatial resolution of 0.52 mm2 per pixel.  The evaluation of high 

gas temperatures (T > 2000 K) remains a challenge for radiative transfer modeling, 

particularly for CO2, where spectral databases are rather limited.  The HITEMP databank 

contains line-by-line parameters for a few molecules (H2O, CO2, CO, NO, and OH) that 

are of particular interest in combustion.  An addition to an empirical emissivity to 

compensating for the CO2 4.3 µm band was necessary for the HITEMP database at T > 

2500 K.  In order to validate the addition of this empirical emissivity at high temperatures 

for the LBLRTM, we have selected from the literature [143] an observed spectrum of the 

4.3 µm CO2 band at 2850 K and simulated the experimental high-temperature CO2 

spectral emissivity.  In summary HITEMP underestimated the observed spectra, however 

the addition of an empirical emissivity improved the quality of the fit.       
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 The use of statistical narrow-band models (EM2C and RADCAL) was validated 

with experimental combustion data at temperatures as high as 2900 K.  Systematic errors 

associated with the spectral models between LBLRTM, RADCAL and EM2C were 

discussed.  Based on the quality of the fit, LBLRTM and RADCAL had the best 

residuals. 

   At surface temperatures as high as 2500 K the heterogeneous reaction 

corresponded to the primary combustion products of CO and CO2, as observed at the 

surface-boundary layer (0.72 mm).  Towards the boundary layer CO conversion to CO2 

was observed thus agreeing with the global homogeneous reaction of Howard et al. [96].  

Overall, the obtained results were consistent with the kinetics interplay between 

heterogeneous and homogeneous reactions, where surface reactions increases the surface 

flux of CO thus oxidizing along the boundary layer to produce CO2   

 

Recommendations for Future Work 

  Although a simplify, single-layer plume radiative transfer model resulted to be an 

adequate approximation a temperature gradient is known to exist along the instrument 

line of sight.  A multi-layer plume model would be computational intensive, but is 

expected to result in much better approximation.   Spatial information obtained from side-

view experiments supplemented with front view experiments will help define the multi-

layer framework.    

  Accuracy of radiative transfer modeling depends on the available spectral 

databases.  Evaluation of combustion species at elevated gas temperatures of T > 2500 K 
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remains challenging, particularly for CO2, where spectral databases are rather limited.  

Also, there is a lack of adequate experimental infrared measurements for these 

combustion gases at very high temperatures, mainly for CO2.  An optional empirical 

emissivity was necessary to improve the quality of the fit at T > 2500 K, where HITEMP 

underestimates the band wings of the 4.3 µm fundamental asymmetric CO2 band [106-

108, 141].  There is a need for more accurate spectral databases for the combustion 

community.  Implementation of the CDSD-4000 database was not studied in our work, 

and it will be recommended to use this database in future combustion work.   Current 

LBLRTM is limited to model combustion data up to 3000 K due to limitation on the total 

internal partition sum (TIPS) [144, 145].  This is an important consideration at high 

irradiances, where plume temperature may reach temperatures as high as 4000 K. 

  Thermal degradation of polymers gives rise to hydrocarbon species, where 

spectral databases are also limited.  We overcome this limitation by the addition of an 

empirical emissivity.  However, in order to account accurately for this hydrocarbon 

species, there is a need to have a database of hydrocarbon species at high temperatures.  

With laser irradiated PMMA experiments we were able to incorporate MMA 

experimental, interpolated and extrapolated absorption coefficient database in our 

radiative transfer model, previously developed by Wakatsuki [121]. 

  The next set of experiments will be focused on the combustion kinetics of laser 

irradiated graphite in a laminar flow, where well established fluid dynamics models exist 

[78, 79, 87-89].  From preliminary testing in a wind tunnel, Appendix B summarizes 

some of the lessons learned, aimed to improve the next set of experiments.  A minimum 
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spectral resolution of 2 cm-1 is required to detect the CO ro-vibrational band from the 

TELOPS, based on buoyant flow experiments.  On preliminary experiments, strong 

spectral emission of CO2 was observed.  However, spectral emission of CO was not 

evident at the 8 cm-1 spectral resolution.  We encounter difficulty focusing the instrument 

with the wind tunnel set-up at a distance of 37 cm.  Further investigation on the 

instrument point spread function and a method on focusing the instrument will be 

important in the next set of experiments.  Another consideration is the design of the 

sample holder, preferable this will be made of ceramic or a material that can resist 

temperatures as high as 4000 K.  The boundary layer plume in a wind tunnel set-up is 

much thinner than the one obtained in the buoyant flow experiments, which could limit 

the spatial resolution that is required for fluid dynamics modeling, those are much smaller 

than the obtained instrument spatial resolutions of  ~ 0.52 mm2 per pixel.  Appendix B 

summarizes the wind tunnel experiments of laser irradiated graphite and a brief 

qualitatively discussion on some preliminary results. 
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Appendix A.  Mid Infrared Imaging Fourier Transform Spectromtery for High 
Power Fiber Laser Irradiated Fiberglass Composites 

(Invited Paper) 

Preface 

New measurement techniques to study continuous wave (cw) laser-material 

interactions are emerging with the ability to monitor the evolving, spatial distribution of 

the state of the surface-gas boundary layer.  A qualitative analysis of gas phase 

combustion plumes above the surface of laser irradiated fiberglass composites is 

developed from fast framing hyperspectral imagery observations.  An imaging Fourier 

Transform Spectrometer (IFTS) operating in the mid-infrared (MWIR) with high framing 

rate has recently been developed at the Air Force Institute of Technology (AFIT) in 

collaboration with Telops Inc.  A 320 x 256 indium antimonide (InSb) focal plane array 

with spectral response from 1.5 – 5.5 µm is mated with a Michelson interferometer to 

achieve spectral resolutions as high as 0.25 cm-1. The very fast 16-tap InSb array frames 

at 1.9 kHz for the full 320 x 256 frame size.  The single pixel field of view of 0.3 mrad 

provides a spatial resolution of 1 mm at the minimum focal distance of 3 m.  Painted and 

unpainted fiberglass composites are irradiated with a 1064 nm cw Nd:YAG laser for 60 s 

at 100 W in air at atmospheric pressure.  Selective emission in the region of 2100 - 3200 

cm-1 is readily evident and is used to develop a time-dependent spatial map of both 

temperature and plume constituents.  The time evolution of gas phase combustion 

products such as CO and CO2 molecules are monitored, with a spectral resolution of 2 

cm-1.   High-speed imagery is obtained using a low-pass filter for the interferograms, 

illustrating significant turbulent behavior during laser irradiation.  Spatial brightness 
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temperature maps exceed 600 K.  Spatial variation in the ratio of [CO2]/[CO] indicates an 

interplay between heterogeneous and homogeneous kinetics.  

 

Introduction 

Laser ablation of materials in an oxidizing environment and under the influence of 

air flow is a complex process defined by the interplay of a number of processes, such as 

oxidation, vaporization, melting, expulsion of molten material, and breakdown/removal 

of oxide layer [1-3].  There has been relatively limited computational efforts aimed at 

investigation of the enhancement of material removal by external gas flow, the effect of 

the oxidation of metal targets on the efficiency of laser cutting, and the characteristics of 

the material recession under conditions of laser-induced charring of polymer composites 

and carbon-rich targets.  Often the fundamental analyses must be limited to a few key 

processes and global, predictive modeling is difficult. 

Fewer studies have been performed on the combustion products of composite 

materials, such as fiberglass reinforced polymers (FRP) [24, 40].  Fiberglass is primarily 

composed approximately of 50% by weight of silica (SiO2) with other inorganic and trace 

components as shown in Table 1 [41].  Fiberglass composite materials may contain 

sizings, binders or flame retardants as well to organics components [42].  FRP have a 

complex chemical structure as discussed by Kinsella et al. [24],  and Ishida et al. [43]  

Moreover this type of composite material is generally composed of adhesive joints with 

many components [43] and multiple interfaces, typically epoxy or polyester based 

polymers [24, 40].    
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The combustion characteristic of polyester-based fiberglass composite materials 

has been described by Landrock [44] as burning with a smoky flame, accompanied by 

melting, dripping and some char formation.  Combustion products of polyester-based 

materials have been reviewed elsewhere [45-47], containing organic components such as 

C6H6 (benzene), (C6H5)2 (biphenyl),  C6H5CH2CH3 (ethyl benzene), C5H8 (pentadiene), 

C6H5CH=CH2 (styrene), and CH3 (toluene).  It has been reported that these composite 

materials have a flash-ignition temperature of approximately 648 K (375 oC) and a self-

ignition temperature of approximately 758 K (485 oC) [40, 44].  

The US Environmental Protection Agency (EPA) investigated the combustion 

products of commercial boating and building fiberglass samples [40].  Elemental analysis 

of these samples before combustion showed that the ratio of carbon (C) composition is 

approximately 47 percent for the building/boating fiberglass samples, with less than 2 

percent of trace elements such as aluminum (Al), cadmium (Cd), chromium (Cr), and 

magnesium (Mg) [40].  During experiments, the EPA reported an average of 129 and 284 

ppm of CO for the boating and building industry fiberglass respectively.  A propane 

burner contributes a sizeable and somewhat variable CO2 emission, however its 

concentration was reported to be an averaged of 2650 and 4300 ppm for both the boating 

and building fiberglass, respectively [40]. 

  Kinsella et al. [24] applied a radiant flux to study the combustion of silicone-, 

melamine-, and epoxy-fiberglass composites by focusing a 600 W tungsten-halogen lamp 

over a 25 mm diameter area.  These materials are used in the construction of aircrafts, 

boats, and military vehicles.  Some visible physical observation on the surface of these 
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fiberglass composites during irradiation are bubbling, charring, out-gassing, laminate 

separation, and spontaneous ignition.  The combustion of these three fiberglass samples 

was monitored by non-imaging Fourier transform infrared spectroscopy (FTS) and the 

products evolving above the surface in the gas phase were identified with its 

corresponding spectra.   Despite the different chemical composition between each 

sample, the evolution of gaseous CO, CO2, H2O and CH2O (formaldehyde) were 

consistent as combustion byproducts with dissimilar HC effluents. Most of the FRP 

combustion products are classified as toxic effluents consequently its spectral 

identification plays an important role for several applications as its early detection [24, 

40, 49, 50].  

Imaging FTS (IFTS) has the potential to measure both spatial and temporal 

variations in brightness temperature, chemical species concentrations, and spectral 

identification of effluents at high resolutions and fast framing rates [4, 5].  Combustion 

events are often turbulent systems with stochastic temperature fluctuations in the plume.  

Some of the benefits of hyperspectral imagery for examining combustion events are: (1) 

turbulence in plume dynamics can be studied from high-speed broadband imagery 

contained in the interferogram cubes, (2) narrow instantaneous field-of-view (IFOV) 

simplifying spatial averaging as well the spectral interpretation for large variations in the 

temperature and density of combustion plumes, and (3) construction of two-dimensional 

dynamics of the evolve species in the gas phase to predict the chemical kinetics interplay 

in a dynamic flow revealing plume symmetry [12]. 
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Gross et al. have demonstrated that IFTS have been used to study the plume of hot 

exhaust from jet engines [13], detonation fireballs [8, 9], and industrial smokestack [16].  

For the jet engine experiments the obtained resulted was averaged to reduce scene-change 

artifacts for interpreting CO, and CO2 spectral emission [13].  These scene fluctuations 

can be further analyzed by taking advantage of the DC-coupled interferograms to extract 

turbulence flow information [12] which is an advantage to non-imaging FTS.  IFTS 

achieved high resolution spectra of industrial smokestack at standoff distances with 1 to 8 

percent error between in situ and remotely estimated SO2 and CO2 volume mixing 

fractions [16].  With previous work illustrating some of the capabilities of this 

instrument, there is significant potential for studying combustion of composite materials 

during laser irradiation.      

In this work, we present the first qualitative midwave (3-5.5 µm) IFTS 

measurement of laser induced combustion plume from fiberglass composite materials.  

After identifying gas phase emitters from their spectral signatures, spatial brightness 

temperatures map of CO and CO2 are developed to illustrate combustion kinetics of 

painted and unpainted FRP. 

 

Experimental 

Instrument Description 

 The IFTS uses a 320 x 256 pixel Stirling-cooled InSb focal plane array (FPA) 

with spectral response ranging from 1800 to 6667 cm-1 (1.5-5.5 µm).  The individual 
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pixel field of view is 0.326 mrad, yielding spatial resolution of ~ 1 mm at the minimum 

focal length of 3 m. A series of modulated intensity images corresponding to optical path 

differences are collected on the FPA, forming an interferogram at each pixel.  Fourier 

transformation of each pixel’s interferogram produces a raw ultra-spectral image. The 

raw spectrum is then calibrated at each pixel with two internal wide-area blackbody 

sources at 313 and 293 K (40 and 20 oC) [19].  The maximum optical path difference 

(MOPD) describes the unapodized spectral resolution. For the present study, the 

integration time for each frame is 20 µs and the spectral resolution was 2 cm-1.  A hyper-

spectral data cube is comprised of a three-dimensional (3D) image of 32 pixels x 32 

pixels x 9480 frames.  Additional instrument details can be found in the literature [4, 5]. 

 

Experimental Set-Up 

 A schematic diagram illustrating the experimental set-up is shown in Figure 50.  

Unpainted and painted fiberglass composites samples (2.54 cm x 2.54 cm) were 

irradiated with a 1064 nm CW Nd:YAG laser at 100 W for 60 s in air at atmospheric 

pressure. The IFTS monitored the continuous plume emission above the surface of the 

fiberglass sample, at a focal distance of approximately 3.1 m (Figure 50a).  Test samples 

were positioned normal to the incident laser energy with an irradiance of 45 W/cm2.  A 

cold blackbody plate was located at the instrument FOV perpendicular to the combustion 

plume for emission measurements (Figure 50b).  
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Painted (Figure 51a) and unpainted (Figure 51b) fiberglass composites samples 

are shown before and after the 60 s laser radiation for visual comparison.  Figure 51c 

illustrates the physical responses of the tested fiberglass material to the laser energy 

throughout an assortment of time intervals during experimentation. 

 

  

 

Figure 50.  (a) Top view for schematic diagram of the experiment set-up with the IFTS 

perpendicular to the combustion plume for the laser irradiation event. (b) Photo of the 

actual testing set-up with the sample normal to the laser energy and a cold blackbody 

plate positioned at the instrument FOV perpendicular to the combustion plume.  
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Figure 51.  (a) Painted and (b) unpainted fiberglass composite samples before and after 

60 s laser radiation. (c) From left to right, still photos of distinctive material response to 

the laser radiation throughout different time intervals during experimentation.           

 

Results and Discussion 

 Painted and unpainted fiberglass composite samples exhibited visual differences 

on its surface with char formation following experimentation.   From Figure 51a it 

appears that the exposed charred fibers were not as prominent as in irradiated unpainted 

fiberglass sample (Figure 51b).  Char formation during polymer degradation with heat, 

directly affects the degree of flame retardancy of the polymeric material.  Van Krevelen 

[152] observed that the intrinsic flammability of any polymer reduces as it char-forming 

tendency increases, since char always formed at the expense of volatile fuel.  According 
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to Kandola et al. [153] the correlation between increased char formation and flame 

resistance is threefold.  First, char formation occurs through cross linking reactions, 

reducing the quantity of volatile pyrolysis fragments; second, char acts as insulator, that 

separates the virgin polymer from the heat of the flame; and third, a charred surface 

impedes the outward flow of combustible gases produced from the degradation of the 

underlying unburnt material.  Considering these factors, the addition of a surface-active 

intumescent system will act as an insulator for the underlying material structure.  These 

are usually in the form of paints on the surface of polymers or metal structures.  

Difference between painted and unpainted fiberglass samples after irradiation can be 

elucidated from the above mentioned factors that the paint at the surface acted as an 

insulator for the underlying fiberglass material.  Moreover the intumescent or paint will 

fill inter-fiber spacing as it chars, and when in contact with the charring fiberglass, it will 

interact with the adjacent fibers if compatible liquified phases are present during the 

initial pyrolysis or combustion [153].   

Several material responses were observed during the 60 s laser irradiation of both 

unpainted and painted fiberglass composite surfaces.  Throughout experimentation the 

FRPs burned with a smoky flame, accompanied by visible changes in colors until it self-

ignited, followed by a steady combustion flame and char formation at the surface as 

shown in Figure 51c.  These are the typical combustion characteristic of polyester-based 

fiberglass materials [44]. 

The top left panel of Figure 52 presents the raw hyperspectral image (32 x 32 

pixels) for a single frame of the unpainted fiberglass composite material, accompanied by 
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the raw Fourier transform infrared (FTIR) spectrum (top right panel) of pixel (15,26).   

The plume direction is caused by the flow of the fume hood (Figure 50b) and its structure 

is clearly evident from the raw hyperspectral image of the unpainted (top left) and painted 

(bottom left) fiberglass composites during laser irradiation.  The difference between 

painted and unpainted fiberglass plume structure is clearly evident. The painted surface 

heated much rapidly consequently outgassing very quickly with turbulent behavior in the 

MWIR, not evident in the unpainted material.  The rapid heat on the painted sample can 

be explained from Kandola et al. [153] observations that melted paint will combined with 

the interfiber void as it chars, then combining with adjacent fibers, giving rise to unique 

fibrous char-reinforced intumescent structure with enhanced mechanical properties.  Self-

ignition for the fiberglass composites proceeded at different rates with the painted 

material combusting ahead.  The spectral imagery reveals information related to fluid 

dynamics, and a detailed examination of this will be subject to future work. 
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Figure 52.  Top panel: Unpainted fiberglass composite raw hyperspectral image (32 x 32 

pixels) of a single frame (left).  (Right) Corresponding raw FTIR spectrum of pixel 

(15,26) from the top left image.  Bottom Panel:  Painted fiberglass composite raw 

hyperspectral (32 x 32 pixels) image of a single frame (left).  (Right)  Corresponding raw 

FTIR spectrum of pixel (15,26) from the bottom left image.  The raw FTIR spectrum is 

for a single pixel (row, column) of a hyperspectral data cube.  The brightest pixels are 

saturated in this image. 
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Unpainted and painted fiberglass raw FTIR spectrum reveals several diatomic, 

and polyatomic specie.  These molecules can be readily identified by their corresponding 

ro-vibrational spectra for pixel (15,26).  The imaginary component of the spectrum, 

shown in green, provides an estimate of the noise level of the instrument.  The signal 

contained in the real part and noise is equitable distributed among the real and imaginary 

parts.  From the real part of the spectrum is readily evident the spectral signature of 

gaseous H2O, CO, CO2, CH2O and C6H6 molecules as combustion products of the 

fiberglass composite material.  The absorption features of atmospheric H2O (1800 <ν< 

2000 cm-1) and CO2 (2320 <ν< 2400 cm-1) are present.  Perhaps the most easily 

recognizable spectral features are the P- and R- branch emission lines between 2000 cm-1 

and 2220 cm-1 arising from the fundamental CO ro-vibrational transitions.  Lines P(1) – 

P(41) beginning at 2143 cm-1 and decreasing with frequency at nearly equally spaced 

intervals are observed.  Similarly, lines R(0) – R(26) beginning at 2152 cm-1 and 

increasing nearly uniformly spaced intervals are also observed.  Much of the CO lines in 

the R- branch can be seen riding on the CO2 continuum in the 2160 to 2240 cm-1 region.  

The R- branch of the CO fundamental band, which lies closet to the CO2 ν3 band, is 

strongly overlapped by the hot CO2 spectrum, but the P- branch suffers little CO2 

interference [98].  

The most prominent spectral features arise from the rotational structure associated 

with transitions between various CO2 levels.  The narrow emission line at 2386 cm-1 

arises from the asymmetric stretching mode, however most emission lines associated to 

this rotational structure are subsequently absorbed by atmospheric CO2 along the line-of-
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sight.  Combustion plume temperatures are relatively high and increase the population of 

higher energy rotational levels, consequently causing emission outside this opaque 

region.  Likewise, emission is observed on the low wavenumber edge of this opaque 

region for the same reason, as well with various thermally accessible ro-vibrational states, 

becoming available at elevated plume temperatures.  The pattern of strong CO2 emission 

on each side of the same atmospheric CO2 absorption spectra is found on many 

combustion plumes [24, 40, 98].  This large emission features are often referred as the red 

(longer wavelength) and blue (shorter wavelength) spike or hot CO2 bands [99] at 2285 

and 2288 cm-1 respectively. 

The presence of hydrocarbon (HC) is also recognized in the fiberglass composite 

plume spectrum, and their respective emission bands are identified between 2800 to 3200 

cm-1.  For alkenes the C-H emission features of stretching modes occurs for sp2 and sp3 

orbital above and below 3000 cm-1 respectively.  According to Kinsella et al. [24] CH2O 

spectral emission appear as a HC combustion product of melamine-, epoxy-, and silicone-

fiberglass between 2750 - 3000 cm-1.  Poljansek et al. [154] reported that the C-H stretch 

and C-H bend overtone for CH2O appeared respectively at 2980 and 2914 cm-1.  

Furthermore C6H6 emission was only evident with the silicone-fiberglass between 3000 – 

3200 cm-1.   Benzene has been associated as a combustion product of polyester-based 

fiberglass [44], silicone is typically used as a polyester resin, which explains its emission 

on combusting silicone-fiberglass.  Furthermore, the isomeric benzene structures were 

identified by Anderson et al. [155] and assigned its corresponding FTIR spectra.  Most 
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benzene isomers have emission peaks above 3000 cm-1 corresponding to sp2 C-H 

stretching. 

 

 

Figure 53.  Average calibrated FTIR CO and CO2 spectra of unpainted (top left panel) 

and painted fiberglass (bottom left panel) for a choice of pixels.  Time average brightness 

temperatures maps of CO at 2065 cm-1 and CO2 at 2288 cm-1 for unpainted (top right 

panel) and painted (bottom right panel) fiberglass.     
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Radiometric calibration was accomplished using two on-board blackbodies set at 

313 and 293 K (40 and 20 oC).  Calibrated to radiance units [µW/(cm2 sr cm-1)], the CO 

and CO2 FTIR spectra of unpainted and painted fiberglass are plotted for pixels: (16,27), 

(26,24), (22,19), (15,8), (15,24) in Figure 53 top and bottom left panels.  Spatial 

brightness temperature maps of CO at ν=2065 cm-1 and CO2 at ν=2288 cm-1 are shown in 

Figure 53 for unpainted and painted material.  These brightness temperature maps 

represent the temperature a perfect blackbody in thermal equilibrium would have to be 

with its surrounding to duplicate the observed intensity at a specific wavenumber.  The 

brightness temperature maps are time averages for the entire 60 s event. Temperatures 

exceeding 600 K are evident spatially for CO2 and evidently hotter than CO, the painted 

material exhibit cold temperatures throughout combinations of pixel rows 11-22 and 

columns 28-29.  These regions are saturation in the detector and subsequently gave rising 

to unphysical brightness temperature measurements. 
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Figure 54.  Ratio of CO2/CO spatial brightness temperature maps for unpainted (top left 

panel) and painted (bottom left panel) fiberglass composite.  Plot of the CO2/CO ratio 

along all columns of row 15 for unpainted (top right panel) and painted (bottom right 

panel) fiberglass. 

 

 

Spatial brightness temperature map are proportional to species concentration. As 

an initial step we investigate the combustion kinetics of CO and CO2 from their 

brightness temperature ratios.  From Figure 54 the concentration of CO2 is higher at the 

combustion plume above the surface, spatially the material surface is above column 31 

with decreasing column numbers shifting away from surface boundary to the gas phase 

plume. Once the fiberglass composite self-ignited, its combustion flame was so intense 

that saturated most pixels closed to the surface, approximately around columns 30-32.  
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However we can still study the species kinetics above the surface and the relationship 

between them.  These first qualitative observations will lead to the development of 

radiative transfer models for species quantification, detail interpretation of plume 

emissivity and temperatures in future work.  

 

Conclusions 

 A qualitative analysis of gas phase combustion plumes above the surface of laser 

irradiated fiberglass composites were developed from fast framing hyperspectral imagery 

observations.  The painted and unpainted fiberglass composites studied exhibited 

variations in response to the 45 W cm-2 laser irradiance.  The FRPs burned with a smoky 

flame, accompanied by visible changes in colors until it self-ignited, followed by a steady 

combustion flame and char formation, which are the combustion characteristic of 

polyester-fiberglass.  Based on characteristic FTIR spectra of effluents in the plume, we 

readily identified H2O, CO, CO2, CH2O, and C6H6 as combustion products of the 

fiberglass composites.  Based on literature survey on the FTIR emission spectrum of 

these HC, we can confidently associate the FTIR emission spectra between 2840 – 3000 

cm-1 to CH2O and 3000 – 3200 cm-1 to C6H6 as combusting products of the painted and 

unpainted fiberglass composites.   Spatial brightness temperatures exceeding 600 K 

showing variation in the ratio of [CO2]/[CO] indicated interplay between heterogeneous 

and homogeneous kinetics. Based on these observations spatial concentration and 

temperature maps is feasible for future work.          
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Appendix B.  Preliminary Experiments of Laser Irradiated Graphite in an Oxidizer 

Flow of M = 0.2 

Introduction 

 As part of an effort to develop IFTS for laser lethality application, we began with 

previous experiments in a buoyant flow above FRP, PMMA, and porous graphite 

surfaces.  Allowing setting the foundation for future experiments aimed to close the gap 

between the empirical lethality databases and fundamental modeling with predictive 

capabilities.  The kinetics of combustion above graphite samples in M = 0.1 - 0.9 laminar 

flows is of particular interest to both the combustion and laser communities, where well 

established kinetics models exists [87, 88, 150].  Preliminary results in an oxidizer flow 

of M = 0.2 are discussed below, to investigate the instrument performance and allow for 

better planning of a robust set of experiments.  Future work focus on investigating the 

combustion kinetics in laminar flows to merge experiments with detailed reactive fluid 

dynamics simulations. 

 

Preliminary Results 

Figure 55 shows a schematic diagram for the experimental set-up.  The imaging 

FTIR (TELOPS) was focused 37 cm from the sample edge and perpendicular to the 

surface.  A mirror was placed above the graphite target surface, since the laser beam was 

coming in an angle above the TELOPS, to irradiated the graphite surface.  Also, other 

instruments were used to complement the data acquisition from the imaging FTIR.  A 
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non imaging FTIR (BOMEM) was focused at 3.13 m.  High speed infrared (FLIR) and 

visible cameras (Phantom), were also used as seen from Figure 55.  

 For this testing, we looked at three different porous graphite with particle sizes of 

0.6 cm, 0.15 cm, and 0.001 cm.  The graphite targets were square samples with a size of 

58.06 cm2 and 1.27 cm thickness.  The laser beam diameter was ~ 4.44 cm and the targets 

were irradiated for 120 s with peak irradiances between 0.22 and 2.1 kW/cm2.  The 

imaging FTIR FPA was narrowed to a window size of 256 x 50 pixels.  Integration time 

was set to 50 µs per frame and a spectral resolution of 8 cm-1.  The oxidizer was air with 

a flow of M =  0.2, for a duration of 120 s.  Table 8 summarizes the test matrix for the 

wind tunnel experiments.   

 

 

 

Table 8.  Test matrix for wind tunnel experiments 

Porosity Peak Irradiance TELOPS ND filter 
0.6 cm 0.2 – 1.1 kW/cm2 0.3, 1.0 
0.125 cm 0.8 – 2.1 kW/cm2 1.0, 1.45 
0.001 cm 0.8 kW/cm2 0.3, 0.6, 1.0 
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Figure 55.  Experimental set-up schematic diagram 

 

 

 

 

 
 

 



 

 169 

 

 

Figure 56.  Broadband imagery with hot black body in background 

 

Figure 56 is the infrared broadband image with a warm black body in background 

to point out the experimental set-up from the TELOPS camera view.  The sample holder 

was made of steel, a set of screws were at the end of the graphite target to hold the 

sample in place while the wind tunnel was on.  To further understand the intensity 

variation from the broadband imagery, Figure 57 look at the change of intensity as a 

function of rows for three different columns.   
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Figure 57.  Non-uniformity corrected (NUCd) intensity variation of an un-processed 

hyperspectral image at a frame for three different columns (C). 

  

 For columns (C) 105, 146 and 188, the intensity variation for a hyperspectral 

image at a single frame is plotted as a function of rows in Figure 57. At C105, the 

intensity rise much slower that at columns 146 and 188 respectively.  Columns 146 and 

188 reaches the same intensity value at row 14, where for column 105 it takes 10 pixels 

to reach same values. This intensity variation tells us that there exists a slight tilt with the 

instrument camera.  Also, a rough idea of the instrument point spread function (PSF) can 

be obtained from the qualitatively analysis.  By shifting column 105 intensity by 2 rows 

(adding two rows) and column 146 by 1 row, it is seen from Figure 58 that the PSF is 

approximately 2 row pixels (y-direction).   
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Figure 58.  Intensity variation by shifting columns 105 and 146 by 2 and 1 rows 

respectively. 

 

By looking at the intensity variation as a function of columns for rows 29, 34 and 

39 in Figure 59, the PSF along the x-driection (columns) can be roughly estimated.  As 

seen from Figure 59 the intensity variation along the columns is less dramatic than for the 

rows (Figure 57). 
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Figure 59.  Intensity variation for broadband imagery as a function of columns for rows 

29, 34 and 39. 

 

Spectral Signal 

 The time averaged spectral data (excluding saturated data) for columns 105, 146 

and 188 (top to bottom) for laser irradiated porous graphite (0.15 cm particle size) at 0.8 

kW/cm2 is shown in Figure 60.  At the spectral resolution of 8 cm-1, strong emission of 

CO2 is evident from the spectral signature.  However, the CO P- and R- branches are not 

evident at this spectral resolution.  The spectral signature is strongest at column 105, 

where at columns close to the nozzle (146 and 188) the CO2 emission becomes weaker.  

From the imagery, the boundary layer plume appears much thinner and closer to the 

surface than the one evolved in a buoyant flow (Figure 38).   
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Figure 60.  Time averaged broadband image and spectral signature for rows along 

columns 105, 146 and 188 for laser irradiated graphite (0.12 cm particle size) at 0.8 

kW/cm2. 

 

The spatially averaged spectrum for the end of the sample (rectangular box) is 

shown in Figure 61.  Strong spectral emission of CO2 was obtained at the end of the 

boundary layer towards the oxidizing stream.  Also no CO spectral signature was evident.  

These time and spatially averaging increases the signal to noise.  However, when plotting 

the un-calibrated spectra for an individual data cube at t = 39 s for rows along column 

106, the spectral appears in Figure 62 very noisy and with oscillations along the wings of 

the spectra.  These oscillations could be due to turbulence at the boundary layer plume.   
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Figure 61.  Time and spatially averaged spectra at the edge of the sample towards the 

oxidizer stream flow. 

 

 
Figure 62.  Un-calibrated spectra at t = 39 s for rows (8 – 12) along column 106. 
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The peak intensity of the CO2 band at 2195 cm-1 was plotted as a function of time 

in Figure 63 for rows 11 to 16 along columns 105, 146 and 188 (from top to bottom after 

the broadband image).  At column 188 there is CO2 signal at row 11, where the intensity 

increases between 10 s  ≤  t  ≤ 15 s.  At t > 15 s the intensity decreases and goes to zero, 

this is indicative of saturation in the signal using a 1.45 ND filter.  At column 146 the 

CO2 signal at row 11 is much more intense and appears to have the same increase and 

decrease rate as column 188.  Much farther away in the oxidizer flow in column 105, the 

spectral CO2 signal appears to not saturate until much later in time (t ~ 70 s).  Also it 

appears that CO2 spectral signature can be detected at other pixels as oppose with 

columns 146 and 188. 

 

 

Figure 63.  Peak CO2 intensity at 2195 cm-1 for rows (11- 16) along columns 105, 146 

and 188. 
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Conclusions 

 From this first set of experiments a lot was learned with the imaging FTIR 

instrument performance to improve the next set of experiments.  First of all a better 

design for a sample holder and nozzle has to be consider prior engaging in the next 

experiment.  It will be important to investigate beforehand the PSF.  Based on the 

preliminary data it appears that there could be problem with focusing the instrument, that 

could have made difficult to detect CO.  Based on buoyant flow experiments, a minimum 

spectral resolution of 2 cm-1 should be used to detect the CO P and R branches.  The next 

test matrix should also investigate what the optimal ND filter will be to not saturated the 

detector.   Even with a 1.45 ND filter data saturated very rapidly as oppose to using a 2.0 

ND filter in the buoyant flow experiments.  Averaging the data both spatially and 

temporally increases the signal to noise.   This has to be taken into account with the 

temporally resolved data processing. The boundary layer plume appears much thinner 

and smaller at the wind tunnel than at a buoyant flow (Figure 34).  The experimental 

results will be limited to the instrument spatial resolution on how many pixels could be 

interpreted at the surface-boundary layer.  Future experiments will be aimed to elucidate 

the combustion kinetics of laser irradiated graphite in an oxidizer flow to anchor with 

fluid dynamics kinetics modeling. 

 

Recommendations for Future Work 

 An important consideration is the design of the sample holder and nozzle.  Based 

on previous experiments in laser heated graphite in buoyant flow, we melted several 
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sample holders due to the high surface temperatures of the graphite samples.  It is 

recommended to have an insulated material such as ceramic that can withstand 

temperatures as high as 4000 K.  Due to the thin boundary layer plume, a high spatial 

resolution will be required.  The IFTS minimum focal distance with the 0.25X telescope 

is 35 cm, yielding spatial resolutions of 0.29 mm2/pixel.  It will be important to 

investigate the instrument point spread function as well to develop a systematic focusing 

method prior the next set of wind tunnel experiments.  Another important consideration is 

the limitation with the line-by-line radiative transfer model.  At gas temperatures above 

2500 K, spectral modeling of the observed combustion gases becomes challenging due to 

underestimation of the band wings of the 4.3 µm fundamental asymmetric CO2 band 

and/or overestimation of the CO2 spectral radiance from the currently available spectral 

databases [106-108, 141].  Also, the radiative transfer mode suffer limitation on the total 

internal partition sum (TIPS) up to 3000 K [144, 145].  It is recommended to investigate 

the implementation of the CDSD-4000 spectral database, since the CO2 absorption cross 

section has been developed up to 5000 K.  However, this will require the extrapolation of 

the CO absorption cross section for temperatures above 3000 K.  It is recommended to 

supplement the IFTS measurements with high-speed framing infrared and visible cameras 

as well with non-imaged FTIR instruments. 
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